Velocity and position control of a wheeled inverted pendulum by partial feedback linearization
暂无分享,去创建一个
Kaustubh Pathak | Sunil Kumar Agrawal | Jaume Franch | S. Agrawal | K. Pathak | Jaume Franch | S. Agrawal
[1] R. W. Brockett,et al. Asymptotic stability and feedback stabilization , 1982 .
[2] R. Marino. On the largest feedback linearizable subsystem , 1986 .
[3] Arjan van der Schaft,et al. Non-linear dynamical control systems , 1990 .
[4] Weiping Li,et al. Applied Nonlinear Control , 1991 .
[5] A. Bloch,et al. Control and stabilization of nonholonomic dynamic systems , 1992 .
[6] Alessandro Astolfi. Asymptotic stabilization of nonholonomic systems with discontinuous control , 1995 .
[7] Shin'ichi Yuta,et al. Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot , 1996, Robotics Auton. Syst..
[8] Rogelio Lozano,et al. Energy based control of the Pendubot , 2000, IEEE Trans. Autom. Control..
[9] Alfred C. Rufer,et al. JOE: a mobile, inverted pendulum , 2002, IEEE Trans. Ind. Electron..
[10] Jorge Angeles,et al. On the nonlinear controllability of a quasiholonomic mobile robot , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).
[11] Jorge Angeles,et al. The control of semi-autonomous two-wheeled robots undergoing large payload-variations , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.
[12] A. Blankespoor,et al. Experimental verification of the dynamic model for a quarter size self-balancing wheelchair , 2004, Proceedings of the 2004 American Control Conference.