Integration of remote sensing, gravity and geochemical data for exploration of Cu-mineralization in Alwar basin, Rajasthan, India

Abstract In spite of the dominance of traditional mineral exploration methods that demand physical characterization of rocks and intense field work, remote sensing technologies have also evolved in the recent past to facilitate mineral exploration. In the present study, we have processed visible near infrared (VNIR) and shortwave infrared (SWIR) bands of Advanced space-borne thermal emission and reflection radiometer (ASTER) data to detect surface mineralization signatures in Mundiyawas - Khera area in Alwar basin, north-eastern Rajasthan, India using spectral angle mapper (SAM). The potential of SAM method to detect target under variable illumination condition was used to delineate galena, chalcopyrite, malachite etc. as surface signatures of mineralization. It was ensured that the identified surface anomalies were spectrally pure using pixel purity index. Spectral anomalies were validated in the field and also using X-Ray diffraction data. Spectral anomaly maps thus derived were integrated using weight of evidence method with the lineament density, geochemical anomaly, bouger anomaly maps to identify few additional potential areas of mineralization. This study thus establishes the importance of remote sensing in mineral exploration to zero in on potentially ore rich but unexplored zones.

[1]  R. Bharti,et al.  Thermal inertia mapping and its application in mineral exploration: results from Mamandur polymetal prospect, India , 2013 .

[2]  P. Hauff,et al.  Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy , 1999, SEG Discovery.

[3]  Mazlan Hashim,et al.  Identifying areas of high economic-potential copper mineralization using aster data in the urumieh-dokhtar volcanic belt, Iran , 2012 .

[4]  N. Özgür Geochemical Pathfinder Elements of the Murgul Copper Deposit, NE Turkey , 1993 .

[5]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[6]  Freek D. van der Meer,et al.  Application of visible and infrared spectroscopy for the evaluation of evolved glauconite , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[7]  S. Alirezaei,et al.  Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo–Sarmeshk area, southern part of the Kerman copper belt, Iran , 2015 .

[8]  P. V. Raju,et al.  Reflectance spectroscopy and ASTER based mapping of rock-phosphate in parts of Paleoproterozoic sequences of Aravalli group of rocks, Rajasthan, India , 2018, Ore Geology Reviews.

[9]  R. S. Chatterjee,et al.  Spectral mapping of morphological features on the moon with MGM and SAM , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[10]  F. Kruse Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra , 1996 .

[11]  Freek D. van der Meer,et al.  Remote-sensing image analysis and geostatistics , 2012 .

[12]  Christophe Delacourt,et al.  Using ASTER remote sensing data set for geological mapping, in Namibia , 2005 .

[13]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[14]  M. Hashim,et al.  The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits , 2012 .

[15]  A. Kontny,et al.  Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District, SE Desert, Egypt , 2004 .

[16]  Vivek K. Sengar,et al.  Spaceborne mapping of hydrothermal alteration zones associated with the Mundiyawas-Khera copper deposit, Rajasthan, India, using SWIR bands of ASTER: Implications for exploration targeting , 2020 .

[17]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[19]  Sanjeevi Shanmugam,et al.  Spectral unmixing of hyperspectral data to map bauxite deposits , 2006, SPIE Asia-Pacific Remote Sensing.

[20]  Yoshiki Ninomiya,et al.  Lithologic mapping with multispectral ASTER TIR and SWIR data , 2004, SPIE Remote Sensing.

[21]  S. Mohanty,et al.  Response of basement and cover rocks to multiple deformations: A study from the precambrian of Rajasthan, Western India , 1988 .

[22]  T. Cudahy,et al.  Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia , 2005 .

[23]  K. D. Singh,et al.  A field technique for rapid lithological discrimination and ore mineral identification: Results from Mamandur Polymetal Deposit, India , 2013, Journal of Earth System Science.

[24]  M. Hashim,et al.  Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data , 2018 .

[25]  A. Guha,et al.  Potential Utility of Spectral Angle Mapper and Spectral Information Divergence Methods for mapping lower Vindhyan Rocks and Their Accuracy Assessment with Respect to Conventional Lithological Map in Jharkhand, India , 2018, Journal of the Indian Society of Remote Sensing.

[26]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[27]  T. Kusky,et al.  ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt , 2007 .

[28]  F. Kruse Mapping surface mineralogy using imaging spectrometry , 2012 .

[29]  R. K. Jain,et al.  Airborne hyperspectral data for mineral mapping in Southeastern Rajasthan, India , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[30]  Simon J. Hook,et al.  Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .

[31]  M. Borengasser,et al.  Hyperspectral Remote Sensing: Principles and Applications , 2007 .

[32]  Israil Khan,et al.  Proterozoic Felsic Volcanics in Alwar Basin of North Delhi Fold Belt, Rajasthan: Implication for Copper Mineralization , 2014 .

[33]  A. Ghulam,et al.  Lithological mapping in the Central Eastern Desert of Egypt using ASTER data , 2010 .

[34]  Carlos Roberto de Souza Filho,et al.  A review on spectral processing methods for geological remote sensing , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[35]  J. Huntington,et al.  Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu–Au deposit, Xinjiang, China , 2005 .

[36]  B. Mason Principles of geochemistry , 1958 .

[37]  M. Hashim,et al.  Integrating PALSAR and ASTER data for mineral deposits exploration in tropical environments: a case study from Central Belt, Peninsular Malaysia , 2015 .

[38]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[39]  T. Warner,et al.  Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada: a rule-based system , 2010 .

[40]  Yanyan Sun,et al.  Application of short-wave infrared spectroscopy to define alteration zones associated with the Elura zinc–lead–silver deposit, NSW, Australia , 2001 .

[41]  Snehamoy Chatterjee,et al.  Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[42]  Sabine Chabrillat,et al.  Field reflectance spectrometry for detection of swelling clays at construction sites , 2001 .

[43]  A. Roy,et al.  Chapter 4 Lithostratigraphic, geochronological and depositional framework of the Precambrian basins of the Aravalli Mountains and adjoining areas, Rajasthan, India , 2015 .

[44]  Israil Khan,et al.  A note on new find of thick copper and associated precious metal mineralisation from Alwar basin of North Delhi Fold Belt, Rajasthan , 2013, Journal of the Geological Society of India.

[45]  Freek D. van der Meer,et al.  Imaging spectrometry for geological remote sensing , 1998 .

[46]  C. Sastry,et al.  Present status of the geochronology of the Precambrian rocks of Rajasthan , 1984 .

[47]  Philippa J. Mason,et al.  Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China , 2011 .

[48]  Mazlan Hashim,et al.  Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran , 2011 .

[49]  Xiya Zhang,et al.  Lithological mapping from hyperspectral data by improved use of spectral angle mapper , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[50]  Alexander F. H. Goetz,et al.  Rapid gangue mineral concentration measurement over conveyors by NIR reflectance spectroscopy , 2009 .

[51]  Mazlan Hashim,et al.  ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration , 2014, SpringerPlus.

[52]  E. Cloutis,et al.  Review Article Hyperspectral geological remote sensing: evaluation of analytical techniques , 1996 .