New splitting formulations for lattice summations

We present a new formulation for the efficient evaluation of pairwise interactions for large nonperiodic or spatially periodic infinite lattices. Our optimally designed splitting formulation generalizes the Ewald method and its Gaussian core function. In particular, we show that a polynomial multiplication to the Gaussian core function can be used to formulate desired mathematical or physical characteristics into a lattice summation method. Two optimization statements are examined. The first incorporates a pairwise interaction splitting into the lattice sum, where the direct (real) and reciprocal space terms also isolate the near-field and far-field pairwise particle interactions, respectively. The second optimization defines a splitting with a rapidly convergent reciprocal space term that allows enhanced decay rates in the real-space term relative to the traditional Ewald method. These approaches require modest adaptation to the Ewald formulation and are expected to enhance performance of particle-mesh methods for large-scale systems. A motivation for future applications is large-scale biomolecular dynamics simulations using particle-mesh Ewald methods and multiple time step integration.

[1]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[2]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[3]  On the stability of crystal lattices. II , 1940 .

[4]  M. Born,et al.  The thermodynamics of crystal lattices , 1943, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  C. Kittel Introduction to solid state physics , 1954 .

[6]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[7]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[8]  N. H. March,et al.  Theoretical solid state physics , 1973 .

[9]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[10]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[11]  F. Y. Hajj A simple method for the potential in ionic crystals , 1979 .

[12]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  D. Heyes,et al.  Electrostatic potentials and fields in infinite point charge lattices , 1981 .

[14]  D. J. Adams,et al.  Taming the Edwald sum in the computer simulation of charged systems , 1987 .

[15]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[16]  Ashcroft,et al.  Rapid convergence of lattice sums and structural integrals in ordered and disordered systems. , 1988, Physical review. B, Condensed matter.

[17]  N. Karasawa,et al.  Acceleration of convergence for lattice sums , 1989 .

[18]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[19]  Darrin M. York,et al.  The fast Fourier Poisson method for calculating Ewald sums , 1994 .

[20]  Henrik Gordon Petersen,et al.  The very fast multipole method , 1994 .

[21]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[22]  Wilfred F. van Gunsteren,et al.  Lattice‐sum methods for calculating electrostatic interactions in molecular simulations , 1995 .

[23]  Jim Glosli,et al.  Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems , 1996 .

[24]  R. Skeel,et al.  Cheap implicit symplectic integrators , 1997 .

[25]  P. Weiner,et al.  Computer Simulation of Biomolecular Systems , 1997 .

[26]  Christian Holm,et al.  How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines , 1998 .

[27]  G. Martyna,et al.  Electrostatic calculations and multiple time scales in molecular dynamics simulation of flexible molecular systems , 1998 .

[28]  P. F. Batcho SPECTRALLY ACCURATE NUMERICAL SOLUTION OF THE SINGLE-PARTICLE SCHRODINGER EQUATION , 1998 .

[29]  T Darden,et al.  New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. , 1999, Structure.

[30]  Application of a Multiple Time Step Algorithm to Biomolecular Systems , 1999 .

[31]  L. Nilsson,et al.  On the truncation of long-range electrostatic interactions in DNA. , 2000, Biophysical journal.

[32]  Batcho Pf Computational method for general multicenter electronic structure calculations. , 2000 .

[33]  Robert Krasny,et al.  An Ewald summation based multipole method , 2000 .

[34]  J. Caillol,et al.  Ewald sums for Yukawa potentials , 2000 .

[35]  Masuhiro Mikami,et al.  Computationally efficient canonical molecular dynamics simulations by using a multiple time‐step integrator algorithm combined with the particle mesh Ewald method and with the fast multipole method , 2000 .

[36]  Philippe H. Hünenberger,et al.  Optimal charge-shaping functions for the particle–particle—particle–mesh (P3M) method for computing electrostatic interactions in molecular simulations , 2000 .

[37]  A. Grzybowski,et al.  Ewald summation of electrostatic interactions in molecular dynamics of a three-dimensional system with periodicity in two directions , 2000 .

[38]  D. Case,et al.  Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations , 2001 .

[39]  T Schlick,et al.  Time-trimming tricks for dynamic simulations: splitting force updates to reduce computational work. , 2001, Structure.