9-GHz Wideband CMOS RX and TX Front-Ends for Universal Radio Applications

Wideband receiver (RX) and transmitter (TX) RF front-ends for wireless universal radio applications are presented. The RX is comprised of a two-stage low-noise amplifier (LNA) applying feedback and shunt peaking, a combiner buffer for performance boosting, and an inverter-based in-phase/quadrature (IQ) down-conversion mixer. The wideband LNA provides input matching of better than -10 dB from dc to beyond 10 GHz. The conversion gain (CG) of the RX front-end has a peak value of 31 dB with a 3-dB bandwidth up to 9 GHz. The minimal noise figure is 6 dB and kept below 9 dB within the entire operational bandwidth. The RX has a linearity in terms of intermodulation distortion of better than -12 dBm. The direct conversion TX involving inverter-based IQ modulator and Darlington-type pre-power amplifier features operation up to 9 GHz with 10-dB mean CG and an average output power of 4 dBm at 1-dB compression level. Excluding buffers and local oscillator generation, the RX and TX dissipate 54 and 84 mW, respectively, from a 1.2-V voltage supply. The circuit prototypes have been fabricated in a standard 65-nm CMOS low-power process without any additional RF options and occupy an area of only 0.77 mm2 and 0.53 mm2, respectively.

[1]  S. Lee,et al.  A WiMedia-Compliant UWB Transceiver in 65nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[2]  Minjae Lee,et al.  An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.

[3]  M. Tiebout,et al.  A highly linear, differential gyrator in 65nm CMOS for reconfigurable GHz applications , 2009, 2009 Proceedings of ESSCIRC.

[4]  C. Grewing,et al.  Fully integrated distributed power amplifier in CMOS technology, optimized for UWB transmitters , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[5]  Kuo-Liang Deng,et al.  A 0.5-14-GHz 10.6-dB CMOS cascode distributed amplifier , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[7]  Eric A. M. Klumperink,et al.  A 0.2-to-2.0GHz 65nm CMOS receiver without LNA achieving ≫11dBm IIP3 and ≪6.5 dB NF , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[8]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[9]  Ali M. Niknejad,et al.  An inductorless high dynamic range 0.3 − 2.6 GHz receiver CMOS front-end , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[10]  S. Lee,et al.  A Broadband Receive Chain in 65nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[11]  Francesco Svelto,et al.  A 0.18-μm CMOS selective receiver front-end for UWB applications , 2006 .

[12]  David R. Greenberg,et al.  RFCMOS technology from 0.25/spl mu/m to 65nm: the state of the art , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[13]  S. Keller,et al.  Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers , 2000, IEEE Journal of Solid-State Circuits.

[14]  J. Koskinen,et al.  A wideband OFDM transceiver implementation for beyond 3G radio systems , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[15]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.

[16]  Hui Zheng,et al.  A 3.1 GHz–8.0 GHz Single-Chip Transceiver for MB-OFDM UWB in 0.18-$\mu$ m CMOS Process , 2009, IEEE Journal of Solid-State Circuits.

[17]  Byunghoo Jung,et al.  A 2.4-GHz Resistive Feedback LNA in 0.13-$\mu$m CMOS , 2009, IEEE Journal of Solid-State Circuits.

[18]  F. Svelto,et al.  A 0.18-$muhbox m$CMOS Selective Receiver Front-End for UWB Applications , 2006, IEEE Journal of Solid-State Circuits.

[19]  Pierluigi Nuzzo,et al.  A 2-mm$^{2}$ 0.1–5 GHz Software-Defined Radio Receiver in 45-nm Digital CMOS , 2009, IEEE Journal of Solid-State Circuits.

[20]  B. Nauta,et al.  The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology , 2008, IEEE Journal of Solid-State Circuits.

[21]  M. Tiebout,et al.  Wideband inductorless minimal area RF front-end , 2009, 2009 Proceedings of ESSCIRC.

[22]  M. Ingels,et al.  A CMOS 100 MHz to 6 GHz software defined radio analog front-end with integrated pre-power amplifier , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[23]  Huei Wang,et al.  A 4–17 GHz Darlington Cascode Broadband Medium Power Amplifier in 0.18-$\mu$ m CMOS Technology , 2010, IEEE Microwave and Wireless Components Letters.

[24]  P. Fontaine,et al.  A 1.5-V multi-mode quad-band RF receiver for GSM/EDGE/CDMA2K in 90-nm digital CMOS process , 2006, IEEE Journal of Solid-State Circuits.

[25]  K.W. Kobayashi Linearized Darlington Cascode Amplifier Employing GaAs PHEMT and GaN HEMT Technologies , 2007, IEEE Journal of Solid-State Circuits.

[26]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[27]  I. Rolfes,et al.  Inductorless Low-Voltage and Low-Power Wideband Mixer for Multistandard Receivers , 2010, IEEE Transactions on Microwave Theory and Techniques.

[28]  D.J. Allstot,et al.  Bandwidth Extension Techniques for CMOS Amplifiers , 2006, IEEE Journal of Solid-State Circuits.

[29]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.

[30]  Daisuke Miyashita,et al.  A 1.2V 0.2-to-6.3GHz Transceiver with Less Than -29.5dB EVM@-3dBm and a Choke/Coil-Less Pre-Power Amplifier , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[31]  Chao Lu,et al.  Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation , 2007, IEEE Transactions on Microwave Theory and Techniques.

[32]  John Rogers,et al.  A Fully Integrated 14 Band, 3.1 to 10.6 GHz 0.13 μm SiGe BiCMOS UWB RF Transceiver , 2008, IEEE Journal of Solid-State Circuits.

[33]  Ramesh Harjani,et al.  1–10GHz inductorless receiver in 0.13µm CMOS , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[34]  R. Castello,et al.  A multi-standard WLAN RF front-end transmitter with single-spiral dual-resonant tank loads , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[35]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.