Cryogenic Yb 3+ -doped materials for pulsed solid-state laser applications [Invited]

We review recent progress in pulsed lasers using cryogenically-cooled Yb3+-doped gain media, with an emphasis on high average power. Recent measurements of thermo-optic properties for various host materials at both room and cryogenic temperature are presented, including thermal conductivity, coefficient of thermal expansion and refractive index. Host materials reviewed include Y2O3, Lu2O3, Sc2O3, YLF, YSO, GSAG and YVO4. We report on the performance of several cryogenic Yb lasers operating at 5-kHz pulse repetition frequency (PRF). A Q-switched Yb:YAG laser is shown to operate at 114-W average power, with 16-ns pulse duration. A chirped pulse amplifier achieves 115-W output using a Yb:YAG power amplifier. Output power of 73 W is obtained from a composite Yb:YAG/Yb:GSAG amplifier, with pulses that compress to 1.6 ps. Finally, a high-average-power femtosecond laser based on Yb:YLF is discussed, with results for a 10-W regenerative amplifier at 10-kHZ PRF.

[1]  Junji Kawanaka,et al.  Highly efficient cryogenically-cooled Yb:YAG laser , 2010 .

[2]  K. Petermann,et al.  High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation , 2009 .

[3]  Tino Eidam,et al.  Femtosecond fiber CPA system emitting 830 W average output power. , 2010, Optics letters.

[4]  P B Phua,et al.  Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier. , 2009, Optics letters.

[5]  L. Deshazer,et al.  Thermo-optic properties of gadolinium garnet laser crystals , 1988 .

[6]  T Numazawa,et al.  Thermal conductivity measurements for evaluation of crystal perfection at low temperatures , 2001 .

[7]  Ferenc Krausz,et al.  High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification. , 2009, Optics letters.

[8]  D.C. Brown,et al.  The promise of cryogenic solid-state lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  P. Nickles,et al.  High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy. , 2009, Optics letters.

[10]  Y. Izawa,et al.  Efficient High-Average-Power Operation of Q-Switched Cryogenic Yb:YAG Laser Oscillator , 2005 .

[11]  Klaus Petermann,et al.  Growth of high-melting sesquioxides by the heat exchanger method , 2002 .

[12]  Charles G. Durfee,et al.  High power ultrafast lasers , 1998 .

[13]  K R Wilson,et al.  Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification. , 1996, Optics letters.

[14]  H. Yashiro,et al.  10 kHz 40W Ti:Sapphire regenerative ring amplifier , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[15]  Junji Kawanaka,et al.  23.7-W picosecond cryogenic-Yb:YAG multipass amplifier. , 2007, Optics express.

[16]  Y. Izawa,et al.  Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics. , 2011, Optics express.

[17]  J. Rothhardt,et al.  Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. , 2007, Optics letters.

[18]  E. G. Wolff,et al.  Precision interferometric dilatometer , 1985 .

[19]  P. Loiko,et al.  Thermo-optic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals , 2010 .

[20]  M. J. Stevenson,et al.  STIMULATED INFRARED EMISSION FROM TRIVALENT URANIUM , 1960 .

[21]  D. Rand,et al.  100-W $Q$ -switched Cryogenically Cooled Yb:YAG Laser , 2010, IEEE Journal of Quantum Electronics.

[22]  David C. Brown,et al.  Kilowatt class high-power CW Yb:YAG cryogenic laser , 2008, SPIE Defense + Commercial Sensing.

[23]  T. Fan,et al.  300-W cryogenically cooled Yb:YAG laser , 2005, IEEE Journal of Quantum Electronics.

[24]  T. Taira,et al.  Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4 , 2007, 2007 Quantum Electronics and Laser Science Conference.

[25]  Kelly M. Currin,et al.  Revisiting the optical properties of Nd doped yttrium orthovanadate. , 2010, Applied optics.

[26]  R. Roy,et al.  Thermal Expansion of Compounds of Zircon Structure , 1990 .

[27]  Matthew J. Bohn,et al.  High average power diamond Raman laser. , 2011, Optics express.

[28]  C. Catlow,et al.  Atomistic Simulation of Defect Structures and Ion Transport in α‐Fe2O3 and α‐Cr2O3 , 1988 .

[29]  S. Shaw,et al.  Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG. , 2011, Optics letters.

[30]  R. W. Evans,et al.  A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures , 2001 .

[31]  J Sherman,et al.  Thermal Compensation of a Cw-Pumped Nd:YAG Laser. , 1998, Applied optics.

[32]  Benjamin J Eggleton,et al.  High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier. , 2010, Optics letters.

[33]  Joseph M Singley,et al.  High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser. , 2010, Optics express.

[34]  T. Y. Fan,et al.  Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range , 2005 .

[35]  M. Murnane,et al.  High efficiency, single-stage, 7 kHz, high average power ultrafast laser system , 2001, Conference on Lasers and Electro-Optics.

[36]  Junji Kawanaka,et al.  30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier. , 2003, Optics letters.

[37]  J. Kay,et al.  Thermal expansion and high-temperature phase transformation of the yttrium silicate Y_2SiO_5 , 2001 .

[38]  Horst Weber,et al.  A novel approach for compensation of birefringence in cylindrical Nd: YAG rods , 1996 .

[39]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[40]  J. Rocca,et al.  Demonstration of an all-diode-pumped soft x-ray laser. , 2009, Optics letters.

[41]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[42]  Fuxi Gan,et al.  Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet , 2003 .

[43]  P. K. Gallagher,et al.  Thermal Expansion of Y2SiO5 Single Crystals , 1988 .

[44]  K Yamakawa,et al.  High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification. , 2007, Optics letters.

[45]  Y. Akahane,et al.  100-mJ diode-pumped, cryogenically-cooled Yb:YLF chirped-pulse regenerative amplifier , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[46]  Eric Esarey,et al.  Laser-driven plasma-wave electron accelerators , 2009 .

[47]  L. L. Bennett,et al.  Innovative high-power CW Yb:YAG cryogenic laser , 2007, SPIE Defense + Commercial Sensing.

[48]  Patrick Georges,et al.  Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping , 2005 .

[49]  P. Georges,et al.  Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2. , 2010, Optics letters.

[50]  T. Fan,et al.  Room-temperature diode-pumped Yb:YAG laser. , 1991, Optics letters.

[51]  T. Fan,et al.  Power scaling of cryogenic Yb:LiYF(4) lasers. , 2010, Optics letters.

[52]  Tso Yee Fan,et al.  165-W cryogenically cooled Yb:YAG laser. , 2004, Optics letters.

[53]  L Bonelli,et al.  Diode-pumped passively mode-locked Yb:YLF laser. , 2008, Optics express.

[54]  Aleem Siddiqui,et al.  Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system. , 2008, Optics letters.

[55]  F. Krausz,et al.  High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers. , 2011, Optics express.

[56]  Y. Akahane,et al.  Multi-millijoule, diode-pumped, cryogenically-cooled Yb:KY(WO(4))(2) chirped-pulse regenerative amplifier. , 2007, Optics express.

[57]  V Laude,et al.  Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. , 2000, Optics letters.

[58]  H. Hoffmann,et al.  Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. , 2010, Optics letters.

[59]  Bien Chann,et al.  Cryogenic Yb$^{3+}$-Doped Solid-State Lasers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.