Spatial contextual classification and prediction models for mining geospatial data

Modeling spatial context (e.g., autocorrelation) is a key challenge in classification problems that arise in geospatial domains. Markov random fields (MRF) is a popular model for incorporating spatial context into image segmentation and land-use classification problems. The spatial autoregression (SAR) model, which is an extension of the classical regression model for incorporating spatial dependence, is popular for prediction and classification of spatial data in regional economics, natural resources, and ecological studies. There is little literature comparing these alternative approaches to facilitate the exchange of ideas. We argue that the SAR model makes more restrictive assumptions about the distribution of feature values and class boundaries than MRF. The relationship between SAR and MRF is analogous to the relationship between regression and Bayesian classifiers. This paper provides comparisons between the two models using a probabilistic and an experimental framework.

[1]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[2]  Stan Z. Li,et al.  A Markov random field model for object matching under contextual constraints , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[4]  William J. Mitsch,et al.  A spatial habitat model for the marsh-breeding red-winged blackbird (Agelaius phoeniceus L.) in coastal Lake Erie wetlands , 1997 .

[5]  Uygar Özesmi,et al.  An artificial neural network approach to spatial habitat modelling with interspecific interaction , 1999 .

[6]  John F. Roddick,et al.  A bibliography of temporal , 1999 .

[7]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[8]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[9]  J. LeSage Bayesian Estimation of Spatial Autoregressive Models , 1997 .

[10]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[11]  John F. Roddick,et al.  A bibliography of temporal, spatial and spatio-temporal data mining research , 1999, SKDD.

[12]  Jim Melton,et al.  SQL multimedia and application packages (SQL/MM) , 2001, SGMD.

[13]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[14]  James P. LeSage Regression Analysis of Spatial Data , 1997 .

[15]  Jiawei Han,et al.  Spatial Data Mining: Progress and Challenges , 1996, Workshop on Research Issues on Data Mining and Knowledge Discovery.

[16]  Philip H. Swain,et al.  Bayesian contextual classification based on modified M-estimates and Markov random fields , 1996, IEEE Trans. Geosci. Remote. Sens..

[17]  J. LeSage,et al.  Spatial Dependence in Data Mining , 2001 .

[18]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[19]  Marijke F. Augusteijn,et al.  Fusion of image classifications using Bayesian techniques with Markov random fields , 1999 .

[20]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[21]  R. Pace,et al.  Sparse spatial autoregressions , 1997 .

[22]  Rakesh Agrawal Tutorial database mining , 1994, PODS '94.

[23]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[25]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[26]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Shashi Shekhar,et al.  Spatial Databases - Accomplishments and Research Needs , 1999, IEEE Trans. Knowl. Data Eng..