Accuracy assessment of the two-sample zero-crossing detection in a sinusoidal signal

The accuracy of a two-sample zero-crossing detection method is assessed by analytical uncertainty propagation and is verified in numerical simulations. Approximated expressions are given to evaluate uncertainty components due to linear interpolation, quantization, white noise and time jitter. The combined standard uncertainty of a detected zero phase is expressed as a function of the signal frequency, power of external noise and parameters of the digitizer used. The evaluation of the uncertainty of the measurand, derived from several detected zero-crossings, is illustrated with applications in frequency, displacement and free-fall acceleration measurements. The reported results can be used for uncertainty analysis and parameter optimization of a measurement system or a procedure, involving processing of sinusoidal signals.

[1]  Michael S. P. Lucas,et al.  Errors in Sampled Data Phase Measurement , 1985, IEEE Transactions on Instrumentation and Measurement.

[2]  D. E. Meer,et al.  Estimating zero-crossings of uniformly sampled data , 1991, Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991.

[3]  L. J. Wang,et al.  First Experience with the Transportable MPG-2 Absolute Gravimeter , 2010 .

[4]  Richard Dewhurst,et al.  Measurement Science and Technology: a historical perspective , 2012 .

[5]  Tsuneya Tsubokawa,et al.  New method of digital fringe signal processing in an absolute gravimeter , 1999, IEEE Trans. Instrum. Meas..

[6]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[7]  Vladimir Friedman,et al.  A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white noise , 1994, IEEE Trans. Signal Process..

[8]  G.E. Mog,et al.  Zero crossing determination by linear interpolation of sampled sinusoidal signals , 2004, 2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956).

[9]  Giovanni Mana,et al.  Accuracy assessment of data analysis in absolute gravimetry , 2003, IEEE Trans. Instrum. Meas..

[10]  M. Djurić,et al.  Frequency measurement of distorted signals using Fourier and zero crossing techniques , 2008 .

[11]  B. Kedem,et al.  Spectral analysis and discrimination by zero-crossings , 1986, Proceedings of the IEEE.

[12]  S. M. Svetlov An Absolute Gravimeter and Vibration Disturbances: A Frequency Responses Method , 1997 .

[13]  Dacheng Li,et al.  Signal processing method of a laser synthetic wavelength interferometer , 2009 .

[14]  Y. Akazawa,et al.  Jitter analysis of high-speed sampling systems , 1990 .

[15]  R. Billson,et al.  Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter , 2011 .

[16]  Giulio Barbato,et al.  A method to estimate the time–position coordinates of a free-falling test-mass in absolute gravimetry , 2005 .

[17]  Dennis Blumenfeld,et al.  Operations Research Calculations Handbook, Second Edition , 2009 .

[18]  Giovanni Mana,et al.  Propagation of error analysis in a total least-squares estimator in absolute gravimetry , 2002 .

[19]  Gerhard P. Hancke The optimal frequency estimation of a noisy sinusoidal signal , 1990 .

[20]  R. Wall Simple methods for detecting zero crossing , 2003, IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468).

[21]  F. Zernike,et al.  Accurate laser wavelength measurement with a precision two-beam scanning Michelson interferometer. , 1981, Applied optics.

[22]  Seppo J. Ovaska,et al.  Adaptive filtering using multiplicative general parameters for zero-crossing detection , 2003, IEEE Trans. Ind. Electron..

[23]  L. J. Wang,et al.  Development of new free-fall absolute gravimeters , 2009 .

[24]  Hua Hu,et al.  Comparison of three digital fringe signal processing methods in a ballistic free-fall absolute gravimeter , 2010 .

[25]  Y. Akazawa,et al.  Jitter analysis of high speed sampling systems , 1989, Symposium 1989 on VLSI Circuits.

[26]  Elmer Sorrentino,et al.  Performance of three algorithms for frequency measurement under transient conditions , 2010 .

[27]  Hua Hu,et al.  Improvements of the MPG-2 transportable absolute ballistic gravimeter , 2010 .

[28]  Simon X. Yang,et al.  Power system frequency estimation using supervised Gauss–Newton algorithm , 2009 .

[29]  P. Winzer Accuracy of error propagation exemplified with ratios of random variables , 2000 .

[30]  V P Koronkevitch,et al.  Laser interferometers for measuring displacements and determining object positions. , 1972, Applied optics.

[31]  Milos Sedlacek,et al.  Low uncertainty power-line frequency estimation for distorted and noisy harmonic signals , 2004 .

[32]  D. White,et al.  ERRATUM: Variance in the Mean of a Sequence of Partially Correlated Measurements , 1990 .

[33]  C. Saloma,et al.  Detection accuracy in zero-crossing-based spectrum analysis and image reconstruction. , 1994, Applied optics.

[34]  Jan Hannig,et al.  Uncertainty calculation for the ratio of dependent measurements , 2003 .

[35]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[36]  William E. Carter,et al.  Improvements in absolute gravity observations , 1991 .

[37]  Giovanni Mana,et al.  Propagation of error analysis in least-squares procedures with second-order autoregressive measurement errors , 2002 .