Nonadiabatic molecular dynamics: Validation of the multiple spawning method for a multidimensional problem

The recently introduced full multiple spawning (FMS) method for molecular dynamics beyond the Born–Oppenheimer approximation is tested against exact numerical solution of the coupled nuclear Schrodinger equation for a two-dimensional model problem with two electronic states. The method uses a multiconfigurational frozen Gaussian ansatz for the wave function and the key idea is to expand the size of the basis set only during nonadiabatic events, using available information to predict the regions of phase space where population will be created. This is accomplished via the spawning procedure which keeps the basis size manageable while ensuring that it provides a reasonable approximation to the exact wave function. The parameters that govern the numerical accuracy of the method are discussed in detail. Expectation values and branching ratios are predicted quantitatively over a broad range of energies.

[1]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[2]  J. Frenkel,et al.  Wave mechanics: Advanced general theory , 1934 .

[3]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .

[5]  J. Tully,et al.  Effects of surface crossing in chemical reactions - The H3 system , 1971 .

[6]  R. Berry,et al.  Theory of Elementary Atomic and Molecular Processes in Gases , 1975 .

[7]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[8]  William H. Miller Dynamics of Molecular Collisions , 1976 .

[9]  Eric J. Heller,et al.  Wigner phase space method: Analysis for semiclassical applications , 1976 .

[10]  J. Jortner,et al.  Absorption lineshapes for the photodissociation of polyatomic molecules , 1977 .

[11]  W. Miller,et al.  A classical analog for electronic degrees of freedom in nonadiabatic collision processes , 1979 .

[12]  Hans-Dieter Meyer,et al.  Analysis and extension of some recently proposed classical models for electronic degrees of freedom , 1980 .

[13]  Eric J. Heller,et al.  Frozen Gaussians: A very simple semiclassical approximation , 1981 .

[14]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[15]  Donald G. Truhlar,et al.  Trajectory‐surface‐hopping study of Na(3p 2P) +H2 → Na(3s 2S)+H2(v′, j′, θ) , 1983 .

[16]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[18]  Michael J. Davis,et al.  Comparisons of classical and quantum dynamics for initially localized states , 1984 .

[19]  Michael F. Herman Nonadiabatic semiclassical scattering. I. Analysis of generalized surface hopping procedures , 1984 .

[20]  J. Broeckhove,et al.  Dynamics of wave packets and the time-dependent variational principle , 1986 .

[21]  R. Levine,et al.  Molecular Reaction Dynamics and Chemical Reactivity , 1987 .

[22]  K. Kay The matrix singularity problem in the time-dependent variational method , 1989 .

[23]  Martin Karplus,et al.  Multidimensional variational Gaussian wave packet dynamics with application to photodissociation spectroscopy , 1990 .

[24]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[25]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[26]  Richard A. Friesner,et al.  Nonadiabatic processes in condensed matter: semi-classical theory and implementation , 1991 .

[27]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[28]  D. Neuhauser,et al.  State-to-State Rates for the D + H2(v = 1, j = 1) → HD(v', j') + H Reaction: Predictions and Measurements , 1992, Science.

[29]  R. Coalson,et al.  Beyond the time‐dependent Hartree grid approximation for curve‐crossing problems , 1992 .

[30]  Mark A. Ratner,et al.  Quantum Mechanics in Chemistry , 1993 .

[31]  Richard A. Friesner,et al.  Stationary phase surface hopping for nonadiabatic dynamics: Two-state systems , 1994 .

[32]  G. D. Billing,et al.  Classical Path Method in Inelastic and Reactive Scattering , 1994 .

[33]  R. Kosloff Propagation Methods for Quantum Molecular Dynamics , 1994 .

[34]  Aron Kuppermann,et al.  The importance of the geometric phase effect for the H + D2 → HD + D reaction☆ , 1995 .

[35]  R. Wyatt,et al.  Experimental Studies and Theoretical Predictions for the H + D2 → > HD + D Reaction , 1995, Science.

[36]  Martin Klessinger,et al.  Excited states and photochemistry of organic molecules , 1995 .

[37]  P. Rossky,et al.  Electron Hydration Dynamics: Simulation Results Compared to Pump and Probe Experiments , 1995 .

[38]  H. Tal-Ezer,et al.  Newtonian propagation methods applied to the photodissociation dynamics of I3 , 1995 .

[39]  R. Baer,et al.  A study of conical intersection effects on scattering processes: The validity of adiabatic single‐surface approximations within a quasi‐Jahn–Teller model , 1996 .

[40]  R. Levine,et al.  Multi-Electronic-State Molecular Dynamics: A Wave Function Approach with Applications , 1996 .

[41]  R. Levine,et al.  First‐principles molecular dynamics on multiple electronic states: A case study of NaI , 1996 .

[42]  P. Rossky,et al.  Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations , 1996 .

[43]  D. Yarkony On the role of conical intersections in photodissociation. V. Conical intersections and the geometric phase in the photodissociation of methyl mercaptan , 1996 .

[44]  R. Levine,et al.  Dynamics of the collisional electron transfer and femtosecond photodissociation of NaI on ab initio electronic energy curves , 1996 .

[45]  T. Martínez,et al.  Classical/quantal method for multistate dynamics: A computational study , 1996 .

[46]  Dynamical Stereochemistry on Several Electronic States: A Computational Study of Na* + H2 , 1997 .

[47]  A wavepacket — path integral method for curve-crossing problems: application to resonance Raman spectra and photodissociation cross sections , 1997 .

[48]  R. Levine,et al.  Molecular Collision Dynamics on Several Electronic States , 1997 .

[49]  Yi Ping Liu,et al.  Validation of trajectory surface hopping methods against accurate quantum mechanical dynamics and semiclassical analysis of electronic-to-vibrational energy transfer , 1997 .

[50]  Todd J. Martínez,et al.  Multiple traversals of a conical intersection: electronic quenching in Na∗ + H2 , 1997 .

[51]  William H. Miller,et al.  Mixed semiclassical-classical approaches to the dynamics of complex molecular systems , 1997 .

[52]  J. Morelli,et al.  Surface hopping and fully quantum dynamical wavepacket propagation on multiple coupled adiabatic potential surfaces for proton transfer reactions , 1997 .

[53]  M. Persico,et al.  Wave Packet Dynamics in the Presence of a Conical Intersection , 1997 .

[54]  T. Martínez Ab initio molecular dynamics around a conical intersection: Li(2p) + H2 , 1997 .

[55]  P. Rossky,et al.  Mean-field molecular dynamics with surface hopping , 1997 .

[56]  R. T. Pack,et al.  Geometric phase effects in the resonance spectrum, state-to-state transition probabilities and bound state spectrum of HO2 , 1997 .