Every binary pattern of length six is avoidable on the two-letter alphabet

U. Schmidt [9, 10] showed that every pattern on two letters of length at least 13 is avoidable an a two-letter alphabet (i.e. 2-avoidable). We prove that this bound can be improved to 6. Since there are patterns of length 5 being not 2-avoidable, this bound is optimal.

[1]  K. A. Baker,et al.  Growth Problems for Avoidable Words , 1989, Theor. Comput. Sci..

[2]  R. C. ENTRINGER,et al.  On Nonrepetitive Sequences , 1974, J. Comb. Theory, Ser. A.

[3]  Julien Cassaigne,et al.  Unavoidable binary patterns , 1993, Acta Informatica.

[4]  Ursula Schmidt,et al.  Avoidable Patterns on 2 Letters , 1987, STACS.

[5]  Ursula Schmidt Long Unavoidable Patterns , 1986, STACS.

[6]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[7]  A. Zimin BLOCKING SETS OF TERMS , 1984 .

[8]  Ursula Schmidt,et al.  Avoidable Patterns on Two Letters , 1989, Theor. Comput. Sci..

[9]  Dwight R. Bean,et al.  Avoidable patterns in strings of symbols , 1979 .

[10]  Joseph B. Kruskal,et al.  Time Warps, String Edits, and Macromolecules , 1999 .