Zero-sum problems with congruence conditions

For a finite abelian group G and a positive integer d, let sdℕ(G) denote the smallest integer ℓ∈ℕ0 such that every sequence S over G of length |S|≧ℓ has a nonempty zero-sum subsequence T of length |T|≡0 mod d. We determine sdℕ(G) for all d≧1 when G has rank at most two and, under mild conditions on d, also obtain precise values in the case of p-groups. In the same spirit, we obtain new upper bounds for the Erdős–Ginzburg–Ziv constant provided that, for the p-subgroups Gp of G, the Davenport constant D(Gp) is bounded above by 2exp  (Gp)−1. This generalizes former results for groups of rank two.

[1]  S. Pattanayak,et al.  Projective normality of finite group quotients and EGZ theorem , 2009 .

[2]  Weidong Gao,et al.  On the Number of Zero-Sum Subsequences of Restricted Size , 2009 .

[4]  Christian Reiher,et al.  On Kemnitz’ conjecture concerning lattice-points in the plane , 2007 .

[5]  David J. Grynkiewicz,et al.  Note on a conjecture of Graham , 2009, Eur. J. Comb..

[6]  Weidong Gao,et al.  Inverse zero-sum problems , 2007 .

[7]  Silke Kubertin,et al.  Zero-sums of length kq in Z , .

[8]  Weidong Gao,et al.  On the Number of Subsequences with Given Sum of Sequences over Finite Abelian $p$-Groups , 2007 .

[9]  Weidong Gao,et al.  On zero-sum sequences of prescribed length , 2006 .

[10]  Wolfgang A. Schmid The Inverse Problem Associated to the Davenport Constant for $C_2\oplus C_2 \oplus C_{2n}$, and Applications to the Arithmetical Characterization of Class Groups , 2011 .

[11]  Yves Edel,et al.  Zero-sum problems in finite abelian groups and affine caps , 2006 .

[12]  David J. Grynkiewicz On a Conjecture of Hamidoune for Subsequence Sums , 2005 .

[13]  Weidong Gao,et al.  Zero-sum problems in finite abelian groups: A survey , 2006 .

[14]  David J. Grynkiewicz,et al.  ON THE STRUCTURE OF MINIMAL ZERO-SUM SEQUENCES WITH MAXIMAL CROSS NUMBER , 2009 .

[15]  S. Lang Number Theory III , 1991 .

[16]  S. Pattanayak,et al.  Projective normality of finite group quotients , 2008 .

[17]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[18]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[19]  Alfred Geroldinger,et al.  Non-unique factorizations , 2006 .

[20]  Wolfgang A. Schmid The Inverse Problem Associated to the Davenport Constant for C2+C2+C2n, and Applications to the Arithmetical Characterization of Class Groups , 2011, Electron. J. Comb..

[21]  Zhi-Wei Sun,et al.  On weighted zero-sum sequences , 2012, Adv. Appl. Math..

[22]  B. Girard On the existence of zero-sum subsequences of distinct lengths , 2009, 0903.3458.

[23]  S. Kubertin,et al.  Zero-sums of length $kq$ in ${\Bbb Z}_{q}^{d}$ , 2005 .

[24]  Huanhuan Guan,et al.  Normal sequences over finite abelian groups , 2011, J. Comb. Theory, Ser. A.

[26]  Jan-Christoph Schlage-Puchta,et al.  Davenport's constant for groups of the form Z₃ ⊕ Z₃ ⊕ Z₃ , 2007 .

[27]  Y. O. Hamidoune,et al.  Distinct Lengths Modular Zero-sum Subsequences: A Proof of Graham's Conjecture , 2009, 0902.4758.

[28]  Alfred Geroldinger,et al.  On Davenport's Constant , 1992, J. Comb. Theory, Ser. A.

[29]  Charles Delorme,et al.  Some remarks on Davenport constant , 2001, Discret. Math..

[30]  Alfred Geroldinger On a Conjecture of Kleitman and Lemke , 1993 .

[31]  Wolfgang A. Schmid,et al.  On short zero-sum subsequences over p-groups , 2010, Ars Comb..

[32]  Wolfgang A. Schmid On zero-sum subsequences in finite Abelian groups. , 2001 .

[33]  Weidong Gao On Zero-Sum Subsequences of Restricted Size , 1996 .

[34]  Wolfgang A. Schmid,et al.  Remarks on a generalization of the Davenport constant , 2010, Discret. Math..

[35]  B. Girard On the existence of distinct lengths zero-sum subsequences , 2009 .

[36]  Jan-Christoph Schlage-Puchta,et al.  Davenport’s constant for groups of the form ℤ₃⊕ℤ₃⊕ℤ_{3} , 2007 .