Large-Scale Reasoning with (Semantic) Data

In this paper, we discuss scalable methods for nonmonotonic rule-based reasoning over Semantic Web Data, using MapReduce. This work is motivated by the recent unparalleled explosion of available data coming from the Web, sensor readings, databases, ontologies and more. Such datasets could benefit from the introduction of rule sets encoding commonly accepted rules or facts, application or domain specific rules, commonsense knowledge etc. This raises the question of whether, how, and to what extent knowledge representation methods are capable of handling huge amounts of data for these applications. Our results indicate that our method shows good scalability properties and is able to handle a benchmark dataset of 1 billion triples, bringing it on par with state-of-the-art methods for monotonic reasoning on the semantic web.

[1]  David Mizell,et al.  High-Performance Computing Applied to Semantic Databases , 2011, ESWC.

[2]  Viktor K. Prasanna,et al.  Parallel Inferencing for OWL Knowledge Bases , 2008, 2008 37th International Conference on Parallel Processing.

[3]  Frank van Harmelen,et al.  WebPIE: A Web-scale Parallel Inference Engine using MapReduce , 2012, J. Web Semant..

[4]  Euripides G. M. Petrakis,et al.  SOWL: A Framework for Handling Spatio-temporal Information in OWL 2.0 , 2011, RuleML Europe.

[5]  Huajun Chen,et al.  The Semantic Web , 2011, Lecture Notes in Computer Science.

[6]  Frank van Harmelen,et al.  Scalable Distributed Reasoning Using MapReduce , 2009, SEMWEB.

[7]  Dieter Fensel,et al.  Towards LarKC: A Platform for Web-Scale Reasoning , 2008, 2008 IEEE International Conference on Semantic Computing.

[8]  Frank van Harmelen,et al.  Mind the data skew: distributed inferencing by speeddating in elastic regions , 2010, WWW '10.

[9]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[10]  Pascal Hitzler,et al.  A MapReduce Algorithm for EL+ , 2010, Description Logics.

[11]  Bernhard Nebel,et al.  Qualitative Spatial Reasoning Using Constraint Calculi , 2007, Handbook of Spatial Logics.

[12]  Frank van Harmelen,et al.  Marvin: Distributed reasoning over large-scale Semantic Web data , 2009, J. Web Semant..

[13]  Grigoris Antoniou,et al.  Computing the Stratified Semantics of Logic Programs over Big Data through Mass Parallelization , 2013, RuleML.

[14]  Jeffrey D. Ullman MapReduce Algorithms , 2015, CODS Companion Volume.

[15]  T. L. McCluskey,et al.  Large-scale Parallel Stratified Defeasible Reasoning , 2012, ECAI.

[16]  Spyros Kotoulas,et al.  Towards Parallel Nonmonotonic Reasoning with Billions of Facts , 2012, KR.

[17]  James A. Hendler,et al.  Parallel Materialization of the Finite RDFS Closure for Hundreds of Millions of Triples , 2009, SEMWEB.