Mechanisms of animal global navigation: comparative perspectives and enduring challenges

Animals navigate over a range of distances, but it has been the global navigation of species migrating among spatially restricted, seasonal homes separated by thousands of kilometers that continues to defy a thorough mechanistic explanation. We survey the navigational behavior of migratory salmon, whales, sea turtles, and birds, as well as dispersing monarch butterflies, to promote the idea that an explicitly comparative approach to global navigation can provide insight into the evolution and properties of navigational mechanisms. The navigational abilities of migrant birds and sea turtles are used to illustrate the concepts of true navigation and vector navigation, leading us to consider the selective forces that might shape the evolution of navigational mechanisms. We propose that different navigational mechanisms, with different scales of accuracy, are likely employed during the course of migration. Furthermore, superficially similar global migratory behavior in different taxonomic groups is likely characterized by different sensory, representational and neural mechanisms reflective of groupspecific adaptation to the physical properties of a migratory environment.

[1]  Wolfgang Wiltschko,et al.  Avian navigation: from historical to modern concepts , 2003, Animal Behaviour.

[2]  E. Maguire,et al.  The Human Hippocampus and Spatial and Episodic Memory , 2002, Neuron.

[3]  Thomas S. Collett,et al.  Memory use in insect visual navigation , 2002, Nature Reviews Neuroscience.

[4]  T. Leisinger,et al.  GENERAL ASPECTS , 1961, Experientia.

[5]  C. Gallistel The organization of action , 1980 .

[6]  Dr. Roswitha Wiltschko,et al.  Magnetic Orientation in Animals , 1995, Zoophysiology.

[7]  Hans G. Wallraff,et al.  Beyond familiar landmarks and integrated routes: goal-oriented navigation by birds , 2005, Connect. Sci..

[8]  G. Hays,et al.  Navigation by green turtles: which strategy do displaced adults use to find Ascension Island? , 2003 .

[9]  M. Davison,et al.  Magnetoreception and its trigeminal mediation in the homing pigeon , 2004, Nature.

[10]  W. Ian Reilly Magnetic position determination by homing pigeons? , 2002, Journal of theoretical biology.

[11]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[12]  S T Emlen,et al.  Celestial Rotation: Its Importance in the Development of Migratory Orientation , 1970, Science.

[13]  G. Matthews. Sun Navigation in Homing Pigeons , 1953 .

[14]  K. Lohmann,et al.  Regional Magnetic Fields as Navigational Markers for Sea Turtles , 2001, Science.

[15]  M. Lindauer,et al.  Himmel und Erde in Konkurrenz bei der Orientierung der Bienen , 2004, Naturwissenschaften.

[16]  Zhang,et al.  Visually mediated odometry in honeybees , 1997, The Journal of experimental biology.

[17]  Tim D. Smith,et al.  Segregation of migration by feeding ground origin in North Atlantic humpback whales (Megaptera novaeangliae) , 2003 .

[18]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[19]  E. Rolls Spatial view cells and the representation of place in the primate hippocampus , 1999, Hippocampus.

[20]  W. Barnes,et al.  Mechanisms of homing in the fiddler crab Uca rapax 2. Information sources and frame of reference for a path integration system , 2003, Journal of Experimental Biology.

[21]  G. Hays,et al.  Testing the navigational abilities of ocean migrants: displacement experiments on green sea turtles (Chelonia mydas) , 2001, Behavioral Ecology and Sociobiology.

[22]  Robert Gisiner,et al.  Local and migratory movements of Hawaiian humpback whales tracked by satellite telemetry , 1998 .

[23]  S. Katona,et al.  Whale migration record , 1990, Nature.

[24]  Henrik Mouritsen,et al.  Waved albatrosses can navigate with strong magnets attached to their head , 2003, Journal of Experimental Biology.

[25]  Khashayar Farsad,et al.  Comparative Vertebrate Neuroanatomy: Evolution and Adaptation , 1996, The Yale Journal of Biology and Medicine.

[26]  S. Åkesson,et al.  OCEANIC NAVIGATION : ARE THERE ANY FEASIBLE GEOMAGNETIC BI-COORDINATE COMBINATIONS FOR ALBATROSSES? , 1998 .

[27]  V P Bingman,et al.  Homing behavior of pigeons after telencephalic ablations. , 1984, Brain, behavior and evolution.

[28]  S. Åkesson,et al.  Nocturnal migratory flight initiation in reed warblers Acrocephalus scirpaceus: effect of wind on orientation and timing of migration , 2002 .

[29]  Ernest Davis,et al.  Representing and Acquiring Geographic Knowledge , 1986 .

[30]  Jan M Hemmi,et al.  Burrow surveillance in fiddler crabs II. The sensory cues , 2003, Journal of Experimental Biology.

[31]  SIMON BENHAMOU,et al.  No evidence for cognitive mapping in rats , 1996, Animal Behaviour.

[32]  N. E. Baldaccini,et al.  Pigeon navigation: Effects upon homing behaviour by reversing wind direction at the loft , 1978, Journal of comparative physiology.

[33]  M. Regnault NITROGEN EXCRETION IN MARINE AND FRESH‐WATER CRUSTACEA , 1987 .

[34]  J. L. Gould The Locale Map of Honey Bees: Do Insects Have Cognitive Maps? , 1986, Science.

[35]  H. Eichenbaum,et al.  Hippocampal representation in place learning , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  Susanne Åkesson,et al.  Island-finding ability of marine turtles , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  R. Menzel,et al.  Honey bees navigate according to a map-like spatial memory. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Lohmann DETECTION OF MAGNETIC INCLINATION ANGLE BY SEA TURTLES: A POSSIBLE MECHANISM FOR DETERMINING LATITUDE , 1994, The Journal of experimental biology.

[39]  W. Barnes,et al.  Mechanisms of homing in the fiddler crab Uca rapax 1. Spatial and temporal characteristics of a system of small-scale navigation , 2003, Journal of Experimental Biology.

[40]  B. Frost,et al.  Do monarch butterflies use polarized skylight for migratory orientation? , 2005, Journal of Experimental Biology.

[41]  A Gagliardo,et al.  Homing in Pigeons: The Role of the Hippocampal Formation in the Representation of Landmarks Used for Navigation , 1999, The Journal of Neuroscience.

[42]  Simon Benhamou,et al.  Bicoordinate navigation based on non-orthogonal gradient fields. , 2003, Journal of theoretical biology.

[43]  P Jouventin,et al.  Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance , 2005, Proceedings of the Royal Society B: Biological Sciences.

[44]  Ken Cheng,et al.  Reflections on geometry and navigation , 2005, Connect. Sci..

[45]  California Sparrows Return from Displacement to Maryland , 1964, Science.

[46]  Kenneth J Lohmann,et al.  Navigation and seasonal migratory orientation in juvenile sea turtles , 2004, Journal of Experimental Biology.

[47]  Hinch,et al.  Computer simulations of the effects of the Sitka eddy on the migration of sockeye salmon returning to British Columbia , 2000 .

[48]  Kenneth J. Lohmann,et al.  Animal behaviour: Geomagnetic map used in sea-turtle navigation , 2004, Nature.

[49]  Francesco Bonadonna,et al.  Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds , 2005, Biology Letters.

[50]  K. Lohmann,et al.  Site fidelity and homing behavior in juvenile loggerhead sea turtles (Caretta caretta) , 2003 .

[51]  K. Frisch The dance language and orientation of bees , 1967 .

[52]  J. Kirschvink,et al.  Evidence that fin whales respond to the geomagnetic field during migration. , 1992, The Journal of experimental biology.

[53]  Henri Weimerskirch,et al.  GPS Tracking of Foraging Albatrosses , 2002, Science.

[54]  B. Frost,et al.  Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Colombo,et al.  Is the avian hippocampus a functional homologue of the mammalian hippocampus? , 2000, Neuroscience & Biobehavioral Reviews.

[56]  Russell Davis Homing Performance and Homing Ability in Bats , 1966 .

[57]  Prof. Arthur D. Hasler,et al.  Olfactory Imprinting and Homing in Salmon , 1983, Zoophysiology.

[58]  Kenneth P. Able,et al.  The concepts and terminology of bird navigation , 2001 .

[59]  G. Hays,et al.  Open-sea migration of magnetically disturbed sea turtles. , 2000, The Journal of experimental biology.

[60]  H. G. Wallraff,et al.  Zur olfaktorischen Navigation der Vögel , 2006, Journal für Ornithologie.

[61]  Kenneth J. Lohmann,et al.  Detection of magnetic field intensity by sea turtles , 1996, Nature.

[62]  Alessandro Sale,et al.  Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[63]  R. Marsh,et al.  The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  R. Beason,et al.  Sensory basis of bird orientation , 1990, Experientia.

[65]  Hans Georg Wallraff,et al.  Avian Navigation: Pigeon Homing as a Paradigm , 2004 .

[66]  S. Laughlin Energy as a constraint on the coding and processing of sensory information , 2001, Current Opinion in Neurobiology.

[67]  Steven M. Reppert,et al.  Illuminating the Circadian Clock in Monarch Butterfly Migration , 2003, Science.

[68]  R. Morse The Dance Language and Orientation of Bees , 1994 .

[69]  R. Wehner Desert ant navigation: how miniature brains solve complex tasks , 2003, Journal of Comparative Physiology A.

[70]  D. Quine,et al.  Frequency shift discrimination: Can homing pigeons locate infrasounds by Doppler shifts? , 1981, Journal of comparative physiology.

[71]  Kenneth P. Able,et al.  Calibration of the magnetic compass of a migratory bird by celestial rotation , 1990, Nature.

[72]  Mandyam V. Srinivasan,et al.  Path integration in insects , 2003 .

[73]  S. Healy,et al.  Hippocampal volume in migratory and non-migratory warblers: effects of age and experience , 1996, Behavioural Brain Research.

[74]  Dora Biro,et al.  Familiar route loyalty implies visual pilotage in the homing pigeon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[76]  Pierre Jouventin,et al.  Foraging Strategy of Wandering Albatrosses Through The Breeding Season: A Study Using Satellite Telemetry , 1993 .

[77]  H. Winkler,et al.  Ecological constraints on the evolution of avian brains , 2004, Journal of Ornithology.

[78]  J. Phillips,et al.  Magnetic Navigation by an Avian Migrant , 2003 .

[79]  Cristina Broglio,et al.  Conservation of Spatial Memory Function in the Pallial Forebrain of Reptiles and Ray-Finned Fishes , 2002, The Journal of Neuroscience.

[80]  R. Menzel,et al.  Cognitive architecture of a mini-brain: the honeybee , 2001, Trends in Cognitive Sciences.

[81]  J. Hagstrum,et al.  Infrasound and the Avian Navigational Map , 2001, Journal of Navigation.

[82]  P. Leblond,et al.  The influence of ocean currents on latitude of landfall and migration speed of sockeye salmon returning to the Fraser River , 1992 .

[83]  M. Mishkin,et al.  A selective mnemonic role for the hippocampus in monkeys: memory for the location of objects , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  T. Quinn,et al.  Timing of imprinting to natural and artificial odors by coho salmon (Oncorhynchus kisutch) , 1996 .

[85]  N. Mrosovsky,et al.  Wavelength preferences and brightness cues in the water finding behaviour of sea turtles. , 1968, Behaviour.

[86]  Jan M Hemmi,et al.  Burrow surveillance in fiddler crabs I. Description of behaviour , 2003, Journal of Experimental Biology.

[87]  Daniel A. Cristol,et al.  Migratory dark-eyed juncos, Junco hyemalis, have better spatial memory and denser hippocampal neurons than nonmigratory conspecifics , 2003, Animal Behaviour.

[88]  Kathryn J. Jeffery,et al.  The neurobiology of spatial behaviour , 2003 .

[89]  L. Boles,et al.  True navigation and magnetic maps in spiny lobsters , 2003, Nature.

[90]  Gerhard Tröster,et al.  Pigeon Homing along Highways and Exits , 2004, Current Biology.

[91]  S. Åkesson,et al.  Examining the limits of flight and orientation performance: satellite tracking of brent geese migrating across the Greenland ice-cap , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[92]  Jonathan D. R. Houghton,et al.  Endangered species: Pan-Atlantic leatherback turtle movements , 2004, Nature.

[93]  Alessandro Sale,et al.  Satellite tracking of migrating loggerhead sea turtles (Caretta caretta) displaced in the open sea , 2003 .

[94]  P. Ioale,et al.  A New Experiment To Verify the Spatial Range of Pigeons' Olfactory Map , 1994 .

[95]  V. Bingman Magnetic Field Orientation of Migratory Savannah Sparrows With Different First Summer Experience , 1983 .

[96]  Simon Benhamou,et al.  Successful homing of magnet-carrying white-chinned petrels released in the open sea , 2003, Animal Behaviour.

[97]  D R Griffin,et al.  The homing ability of the neotropical bat Phyllostomus Hastatus, with evidence for visual orientation. , 1966, Animal behaviour.

[98]  William T. Keeton,et al.  The Orientational and Navigational Basis of Homing in Birds , 1974 .

[99]  Lohmann,et al.  Orientation and open-sea navigation in sea turtles , 1996, The Journal of experimental biology.

[100]  Dittman,et al.  Homing in Pacific salmon: mechanisms and ecological basis , 1996, The Journal of experimental biology.

[101]  Wallraff The magnetic map of homing pigeons: an evergreen phantom , 1999, Journal of theoretical biology.

[102]  H. G. Wallraff,et al.  Avian olfactory navigation: its empirical foundation and conceptual state , 2004, Animal Behaviour.

[103]  F. Dyer Bees acquire route-based memories but not cognitive maps in a familiar landscape , 1991, Animal Behaviour.

[104]  Matthew Collett,et al.  Path integration in insects , 2000, Current Opinion in Neurobiology.

[105]  Ariane S Etienne,et al.  Path integration in mammals , 2004, Hippocampus.

[106]  Walker,et al.  On a Wing and a Vector: a Model for Magnetic Navigation by Homing Pigeons. , 1998, Journal of theoretical biology.

[107]  G. Wilkinson,et al.  Migration and evolution of lesser long‐nosed bats Leptonycteris curasoae, inferred from mitochondrial DNA , 1996, Molecular ecology.

[108]  K. Able,et al.  Wind and the Direction of Nocturnal Songbird Migration , 1970, Nature.

[109]  Bruno Bruderer,et al.  Wind and rain govern the intensity of nocturnal bird migration in central Europe: A log-linear regression analysis , 2002 .

[110]  S. Åkesson,et al.  Long-distance migration: evolution and determinants , 2003 .

[111]  Sidney A. GauthreauxJr. Importance of the Daytime Flights of Nocturnal Migrants: Redetermined Migration Following Displacement , 1978 .

[112]  L. Brower,et al.  Monarch butterfly orientation: missing pieces of a magnificent puzzle , 1996, The Journal of experimental biology.

[113]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[114]  S. Healy Spatial representation in animals. , 1998 .

[115]  Eric Hardy.,et al.  Bird Navigation , 1971, Nature.

[116]  C. Mangum,et al.  Hemocyanins of the genus Uca: structural polymorphisms and native oligomers , 1996 .

[117]  MONARCH BUTTERFLY (DANA US PLEXIPPUS L., NYMPHALIDAE) FALL MIGRATION: FLIGHT BEHAVIOR AND DIRECTION IN RELATION TO CELESTIAL AND PHYSIOGRAPHIC CUES , 2005 .

[118]  A. Carr New Perspectives on the Pelagic Stage of Sea Turtle Development , 1987 .

[119]  T. D. Pigott,et al.  Bird Migration , 1910, Nature.

[120]  J. Zeil Homing in fiddler crabs (Uca lactea annulipes and Uca vomeris : Ocypodidae) , 1998, Journal of Comparative Physiology A.

[121]  Ariane S. Etienne,et al.  How does path integration interact with olfaction, vision, and the representation of space? , 2003 .

[122]  K. Schmidt-Koenig,et al.  Animal Migration, Navigation, and Homing , 1978 .

[123]  A. Craig,et al.  Bird Migration: A General Survey , 2002 .

[124]  W. Hodos,et al.  Comparative Vertebrate Neuroanatomy: Evolution and Adaptation , 2005 .

[125]  Stephen Roberts,et al.  Positional entropy during pigeon homing II: navigational interpretation of Bayesian latent state models. , 2004, Journal of theoretical biology.

[126]  D. Storm,et al.  Sensitization of Olfactory Guanylyl Cyclase to a Specific Imprinted Odorant in Coho Salmon , 1997, Neuron.

[127]  V. Bingman,et al.  Hippocampus Lesions Impair Landmark Array Spatial Learning in Homing Pigeons: A Laboratory Study , 2002, Neurobiology of Learning and Memory.

[128]  H. Dingle,et al.  Season‐specific directional movement in migratory Australian butterflies , 1999 .

[129]  A. Perdeck,et al.  Two Types of Orientation in Migrating Starlings, Sturnus yulgaris L., and Chaffinches, Fringilla coelebs L., as Revealed by Displacement Experiments , 1958 .

[130]  C. Walcott Magnetic maps in pigeons. , 1991, EXS.

[131]  A. Bennett,et al.  Do animals have cognitive maps? , 1996, The Journal of experimental biology.

[132]  P. Berthold Genetic basis and evolutionary aspects of bird migration , 2003 .

[133]  Paolo Luschi,et al.  A review of long‐distance movements by marine turtles, and the possible role of ocean currents , 2003 .