Listvenite Formation During Mass Transfer into the Leading Edge of the Mantle Wedge: Initial Results from Oman Drilling Project Hole BT1B

This paper provides an overview of research on core from Oman Drilling Project Hole BT1B and the surrounding area, plus new data and calculations, constraining processes in the Tethyan subduction zone beneath the Samail ophiolite. The area is underlain by gently dipping, broadly folded layers of allochthonous Hawasina pelagic sediments, the metamorphic sole of the Samail ophiolite, and Banded Unit peridotites at the base of the Samail mantle section. Despite reactivation of some faults during uplift of the Jebel Akdar and Saih Hatat domes, the area preserves the tectonic “stratigraphy” of the Cretaceous subduction zone. Gently dipping listvenite bands, parallel to peridotite banding and to contacts between the peridotite and the metamorphic sole, replace peridotite at and near the basal thrust. Listvenites formed at less than 200°C and (poorly constrained) depths of 25–40 km by reaction with CO2‐rich, aqueous fluids migrating from greater depths, derived from devolatilization of subducting sediments analogous to clastic sediments in the Hawasina Formation, at 400°–500°. Such processes could form important reservoirs for subducted CO2. Listvenite formation was accompanied by ductile deformation of serpentinites and listvenites—perhaps facilitated by fluid‐rock reaction—in a process that could lead to aseismic subduction in some regions. Addition of H2O and CO2 to the mantle wedge, forming serpentinites and listvenites, caused large increases in the solid mass and volume of the rocks. This may have been accommodated by fractures formed as a result of volume changes, mainly at a serpentinization front.

[1]  K. Michibayashi,et al.  Initial Results From the Oman Drilling Project Multi‐Borehole Observatory: Petrogenesis and Ongoing Alteration of Mantle Peridotite in the Weathering Horizon , 2021, Journal of Geophysical Research: Solid Earth.

[2]  K. Michibayashi,et al.  Geochemical Profiles Across the Listvenite‐Metamorphic Transition in the Basal Megathrust of the Semail Ophiolite: Results From Drilling at OmanDP Hole BT1B , 2021, Journal of Geophysical Research: Solid Earth.

[3]  P. Kelemen,et al.  Deep Sourced Fluids for Peridotite Carbonation in the Shallow Mantle Wedge of a Fossil Subduction Zone: Sr and C Isotope Profiles of OmanDP Hole BT1B , 2021, Journal of Geophysical Research: Solid Earth.

[4]  A. Schwedt,et al.  Ductile deformation during carbonation of serpentinized peridotite , 2021, Nature Communications.

[5]  P. Kelemen,et al.  High‐Precision U‐Pb Zircon Dating of Late Magmatism in the Samail Ophiolite: A Record of Subduction Initiation , 2021, Journal of Geophysical Research: Solid Earth.

[6]  M. Searle,et al.  The Origin of Felsic Intrusions Within the Mantle Section of the Samail Ophiolite: Geochemical Evidence for Three Distinct Mixing and Fractionation Trends , 2021, Journal of Geophysical Research: Solid Earth.

[7]  K. Michibayashi,et al.  Major mineral fraction and physical properties of carbonated peridotite (listvenite) from ICDP Oman Drilling Project Hole BT1B inferred from X-ray CT core images , 2021 .

[8]  D. Stockli,et al.  Structural and Thermal Evolution of an Infant Subduction Shear Zone: Insights From Sub‐Ophiolite Metamorphic Rocks Recovered From Oman Drilling Project Site BT‐1B , 2021, Journal of geophysical research. Solid earth.

[9]  C. Gorini,et al.  Structure of the Offshore Obducted Oman Margin: Emplacement of Semail Ophiolite and Role of Tectonic Inheritance , 2020, Journal of Geophysical Research: Solid Earth.

[10]  J. Ague,et al.  Pervasive subduction zone devolatilization recycles CO2 into the forearc , 2020, Nature Communications.

[11]  M. Searle,et al.  Petrochronology of Wadi Tayin Metamorphic Sole Metasediment, With Implications for the Thermal and Tectonic Evolution of the Samail Ophiolite (Oman/UAE) , 2020, Tectonics.

[12]  P. Kelemen,et al.  Brittle Deformation of Carbonated Peridotite—Insights From Listvenites of the Samail Ophiolite (Oman Drilling Project Hole BT1B) , 2020, Journal of Geophysical Research: Solid Earth.

[13]  V. Le Roux,et al.  Quantifying the volume increase and chemical exchange during serpentinization , 2020 .

[14]  P. Kelemen,et al.  A Mg Isotopic Perspective on the Mobility of Magnesium During Serpentinization and Carbonation of the Oman Ophiolite , 2020, Journal of Geophysical Research: Solid Earth.

[15]  D. Stockli,et al.  Timing of Magnetite Growth Associated With Peridotite‐Hosted Carbonate Veins in the SE Samail Ophiolite, Wadi Fins, Oman , 2020, Journal of Geophysical Research: Solid Earth.

[16]  P. Kelemen,et al.  Measurement of Volume Change and Mass Transfer During Serpentinization: Insights From the Oman Drilling Project , 2020, Journal of Geophysical Research: Solid Earth.

[17]  M. Ziegler,et al.  Ultramafic Rock Carbonation: Constraints From Listvenite Core BT1B, Oman Drilling Project , 2019, Journal of Geophysical Research: Solid Earth.

[18]  D. V. van Hinsbergen,et al.  Kinematic and paleomagnetic restoration of the Semail ophiolite (Oman) reveals subduction initiation along an ancient Neotethyan fracture zone , 2019, Earth and Planetary Science Letters.

[19]  G. Abers,et al.  Thermal Structure of the Forearc in Subduction Zones: A Comparison of Methodologies , 2019, Geochemistry, Geophysics, Geosystems.

[20]  D. Sverjensky,et al.  Extended Deep Earth Water Model for predicting major element mantle metasomatism , 2019, Geochimica et Cosmochimica Acta.

[21]  I. Martinez,et al.  Control of CO2 on flow and reaction paths in olivine-dominated basements: An experimental study , 2019, Geochimica et Cosmochimica Acta.

[22]  C. Garrido,et al.  Carbonation of mantle peridotite by CO2-rich fluids: the formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada) , 2018, Lithos.

[23]  B. Dubacq,et al.  Mantle Wedge (De)formation During Subduction Infancy: Evidence from the Base of the Semail Ophiolitic Mantle , 2018, Journal of Petrology.

[24]  P. Kelemen,et al.  Fluid rock interactions on residual mantle peridotites overlain by shallow oceanic limestones: Insights from Wadi Fins, Sultanate of Oman , 2018, Chemical Geology.

[25]  B. Charette,et al.  Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman , 2018, Nature Geoscience.

[26]  R. Littke,et al.  Tectono-thermal evolution of Oman's Mesozoic passive continental margin under the obducting Semail Ophiolite: a case study of Jebel Akhdar, Oman , 2018, Solid Earth.

[27]  P. Agard,et al.  Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman) , 2018 .

[28]  R. Littke,et al.  Multiphase Structural Evolution of a Continental Margin During Obduction Orogeny: Insights From the Jebel Akhdar Dome, Oman Mountains , 2018 .

[29]  T. Fischer,et al.  An essential role for continental rifts and lithosphere in the deep carbon cycle , 2017, Nature Geoscience.

[30]  U. Ring,et al.  Late Eocene Uplift of the Al Hajar Mountains, Oman, Supported by Stratigraphy and Low‐Temperature Thermochronology , 2017 .

[31]  M. Searle,et al.  Evidence for melting mud in Earth's mantle from extreme oxygen isotope signatures in zircon , 2017 .

[32]  T. Tsujimori,et al.  Relict chromian spinels in Tulu Dimtu serpentinites and listvenite, Western Ethiopia: implications for the timing of listvenite formation , 2017 .

[33]  B. Dubacq,et al.  Petrological evidence for stepwise accretion of metamorphic soles during subduction infancy (Semail ophiolite, Oman and UAE) , 2017 .

[34]  C. Malatesta,et al.  Lawsonite-bearing eclogite from a tectonic mélange in the Ligurian Alps: new constraints for the subduction plate-interface evolution , 2017, Geological Magazine.

[35]  D. Reháková,et al.  Late Jurassic to Cretaceous evolution of the eastern Tethyan Hawasina Basin (Oman Mountains) , 2017 .

[36]  K. Maher,et al.  Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks , 2016 .

[37]  P. Kelemen,et al.  Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophiolite formation from high-precision U–Pb zircon geochronology , 2016 .

[38]  A. Chauvet,et al.  Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation , 2016 .

[39]  I. Daniel,et al.  Carbon speciation in saline solutions in equilibrium with aragonite at high pressure , 2016 .

[40]  M. Cathelineau,et al.  Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe , 2016 .

[41]  M. Herwegh,et al.  Mechanical anisotropy control on strain localization in upper mantle shear zones , 2016 .

[42]  L. Crispini,et al.  Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling , 2016 .

[43]  Yanyan Chen,et al.  SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92 , 2016, Comput. Geosci..

[44]  K. Haase,et al.  Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite , 2016, Contributions to Mineralogy and Petrology.

[45]  B. Malvoisin Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical , 2015 .

[46]  M. Kohn,et al.  The Global Range of Subduction Zone Thermal Structures from Exhumed Blueschists and Eclogites: Rocks Are Hotter than Models , 2015 .

[47]  H. Rollinson Slab and sediment melting during subduction initiation: granitoid dykes from the mantle section of the Oman ophiolite , 2015, Contributions to Mineralogy and Petrology.

[48]  P. Kelemen,et al.  Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up , 2015, Proceedings of the National Academy of Sciences.

[49]  A. Ueda,et al.  Melt extraction and metasomatism recorded in basal peridotites above the metamorphic sole of the northern Fizh massif, Oman ophiolite , 2015 .

[50]  K. Haase,et al.  Melts of sediments in the mantle wedge of the Oman ophiolite , 2015 .

[51]  S. Al-Khirbash Genesis and mineralogical classification of Ni-laterites, Oman Mountains , 2015 .

[52]  C. Wilson,et al.  Fluid flow in subduction zones: The role of solid rheology and compaction pressure , 2014 .

[53]  F. Neubauer,et al.  The origin and age of the metamorphic sole from the Rogozna Mts., Western Vardar Belt: New evidence for the one-ocean model for the Balkan ophiolites , 2014 .

[54]  A. Tamura,et al.  Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity , 2014 .

[55]  D. Sverjensky,et al.  Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C , 2014 .

[56]  J. Horita Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures , 2014 .

[57]  M. Cathelineau,et al.  Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite , 2014, Contributions to Mineralogy and Petrology.

[58]  B. Dlugogorski,et al.  Sequestration of atmospheric CO2 in a weathering-derived, serpentinite-hosted magnesite deposit: 14C tracing of carbon sources and age constraints for a refined genetic model , 2013 .

[59]  M. Cathelineau,et al.  Syn-tectonic, meteoric water–derived carbonation of the New Caledonia peridotite nappe , 2013, Geology.

[60]  I. E. Sas,et al.  Serpentinites of the Ural: Mineralogical Features, Petrophysical Properties and Subduction Processes , 2013 .

[61]  R. Miller,et al.  Tectonic development of the Samail ophiolite: High‐precision U‐Pb zircon geochronology and Sm‐Nd isotopic constraints on crustal growth and emplacement , 2013 .

[62]  J. Nakajima,et al.  Thermal–petrological controls on the location of earthquakes within subducting plates , 2013 .

[63]  C. MacLeod,et al.  “Moist MORB” axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin , 2013 .

[64]  J. Bailey,et al.  Formation of weathering-derived magnesite deposits in the New England Orogen, New South Wales, Australia: Implications from mineralogy, geochemistry and genesis of the Attunga magnesite deposit , 2013, Mineralium Deposita.

[65]  B. Hacker Eclogite formation and the Rheology, Buoyancy, Seismicity, and H2O Content of Oceanic Crust , 2013 .

[66]  S. Peacock Thermal and petrologic structure of subduction zones , 2013 .

[67]  G. Galli,et al.  Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth , 2013, Proceedings of the National Academy of Sciences.

[68]  S. Arai,et al.  Petrology and chemistry of basal lherzolites above the metamorphic sole from Wadi Sarami central Oman ophiolite , 2013 .

[69]  M. Styles,et al.  Silicified serpentinite – a residuum of a Tertiary palaeo-weathering surface in the United Arab Emirates , 2012, Geological Magazine.

[70]  P. Kelemen,et al.  Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation , 2012 .

[71]  R. Miller,et al.  Rapid crustal accretion and magma assimilation in the Oman-U.A.E. ophiolite: High precision U-Pb zircon geochronology of the gabbroic crust , 2012 .

[72]  L. Palinkaš,et al.  Genesis of vein-stockwork cryptocrystalline magnesite from the Dinaride ophiolites , 2012 .

[73]  C. Garrido,et al.  Thermodynamic constraints on mineral carbonation of serpentinized peridotite , 2011 .

[74]  M. Herwegh,et al.  Evolution of a polymineralic mantle shear zone and the role of second phases in the localization of deformation , 2011 .

[75]  H. Austrheim,et al.  CO2 sequestration and extreme Mg depletion in serpentinized peridotite clasts from the Devonian Solund basin, SW-Norway , 2010 .

[76]  K. Fischer,et al.  he global range of subduction zone thermal models , 2010 .

[77]  D. Stockli,et al.  Zircon (U–Th)/He thermochronometry in the KTB drill hole, Germany, and its implications for bulk He diffusion kinetics in zircon , 2010 .

[78]  John Frederick Rudge,et al.  A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite , 2010, Earth and Planetary Science Letters.

[79]  G. Abers,et al.  Imaging the source region of Cascadia tremor and intermediate-depth earthquakes , 2009 .

[80]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[81]  J. Nakajima,et al.  Three-dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double-difference tomography , 2008 .

[82]  T. Steuber,et al.  Evolution of a Maastrichtian–Paleocene tropical shallow-water carbonate platform (Qalhat, NE Oman) , 2008 .

[83]  S. Nasir,et al.  Mineralogical and geochemical characterization of listwaenite from the Semail Ophiolite, Oman , 2007 .

[84]  B. Hacker Pressures and Temperatures of Ultrahigh-Pressure Metamorphism: Implications for UHP Tectonics and H2O in Subducting Slabs , 2006 .

[85]  M. Polvé,et al.  Along‐ridge petrological segmentation of the mantle in the Oman ophiolite , 2006 .

[86]  A. I. Karayiğit,et al.  The genesis of the carbonatized and silicified ultramafics known as listvenites: a case study from the Mihalıççık region (Eskişehir), NW Turkey , 2006 .

[87]  M. Searle,et al.  Dating the geologic history of Oman’s Semail ophiolite: insights from U-Pb geochronology , 2005 .

[88]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[89]  O. Matsubaya,et al.  Genesis of hydrothermal stockwork-type magnesite deposits associated with ophiolite complexes in the Kütahya-Eskişehir region, Turkey , 2005 .

[90]  R. Fergason,et al.  Thermal structure of the Costa Rica – Nicaragua subduction zone , 2005 .

[91]  G. Dipple,et al.  CARBONATED SERPENTINITE (LISTWANITE) AT ATLIN, BRITISH COLUMBIA: A GEOLOGICAL ANALOGUE TO CARBON DIOXIDE SEQUESTRATION , 2005 .

[92]  J. Gratier,et al.  A microstructural study of a “crack-seal” type serpentine vein using SEM and TEM techniques , 2004 .

[93]  P. Reiners,et al.  Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating , 2004 .

[94]  P. Razin,et al.  Eoalpine (Cretaceous) evolution of the Oman Tethyan continental margin: insights from a structural field study in Jabal Akhdar (Oman Mountains) , 2004, GeoArabia.

[95]  C. Langmuir,et al.  A hydrous melting and fractionation model for mid‐ocean ridge basalts: Application to the Mid‐Atlantic Ridge near the Azores , 2004 .

[96]  R. Powell,et al.  Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation , 2003 .

[97]  E. Takazawa,et al.  Geochemistry and origin of the basal lherzolites from the northern Oman ophiolite (northern Fizh block) , 2003 .

[98]  P. Kelemen,et al.  Dunite distribution in the Oman Ophiolite: Implications for melt flux through porous dunite conduits , 2002 .

[99]  P. Deines The carbon isotope geochemistry of mantle xenoliths , 2002 .

[100]  T. Ishikawa,et al.  Boninitic volcanism in the Oman ophiolite: Implications for thermal condition during transition from spreading ridge to arc , 2002 .

[101]  M. Searle,et al.  Subduction zone metamorphism during formation and emplacement of the Semail ophiolite in the Oman Mountains , 2002, Geological Magazine.

[102]  R. C. Fletcher,et al.  Mineral growth in rocks: Kinetic-rheological models of replacement, vein formation, and syntectonic crystallization , 2001 .

[103]  J. Connolly,et al.  Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling , 2001 .

[104]  J. Bodinier,et al.  Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite , 2000 .

[105]  P. Kelemen,et al.  Spatial distribution of melt conduits in the mantle beneath oceanic spreading ridges: Observations from the Ingalls and Oman ophiolites , 2000 .

[106]  F. Boudier,et al.  Accretion of Oman and United Arab Emirates ophiolite – Discussion of a new structural map , 2000 .

[107]  M. Mattauer,et al.  Evolutionary model of the Himalaya–Tibet system: geopoem: based on new modelling, geological and geophysical data , 2000 .

[108]  M. Benoit,et al.  The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs , 1999, Nature.

[109]  M. Searle,et al.  The petrogenesis of leucogranitic dykes intruding the northern Semail ophiolite, United Arab Emirates: field relationships, geochemistry and Sr/Nd isotope systematics , 1999 .

[110]  R. Powell,et al.  Calculating phase diagrams involving solid solutions via non‐linear equations, with examples using THERMOCALC , 1998 .

[111]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[112]  E. Gnos,et al.  THE CONUNDRUM OF SAMAIL : EXPLAINING THE METAMORPHIC HISTORY , 1997 .

[113]  D. Nahon,et al.  Pseudomorphic replacement in tropical weathering; evidence, geochemical consequences, and kinetic-rheological origin , 1997 .

[114]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[115]  P. Kelemen,et al.  Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust , 1997 .

[116]  M. Gottschalk Internally consistent thermodynamic data for rock-forming minerals in the system SiO 2 -TiO 2 -Al 2 O 3 -CaO-MgO-FeO-K 2 O-Na 2 O-H 2 O-CO 2 , 1996 .

[117]  E. Gnos,et al.  Rapid emplacement of the Oman ophiolite: Thermal and geochronologic constraints , 1996 .

[118]  B. Hacker,et al.  Metamorphism and deformation along the emplacement thrust of the Samail ophiolite, Oman , 1996 .

[119]  K. Farley,et al.  The effects of long alpha-stopping distances on (UTh)/He ages , 1996 .

[120]  F. Boudier,et al.  Variable crustal thickness in the Oman ophiolite: Implication for oceanic crust , 1996 .

[121]  S. Nasir,et al.  Sedimentological and geochemical interpretation of a transgressive sequence: the Late Cretaceous Qahlah Formation in the western Oman Mountains, United Arab Emirates , 1996 .

[122]  P. Kelemen,et al.  Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels , 1995, Nature.

[123]  C. Halls,et al.  Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland , 1995 .

[124]  Byung-Ik Lee A modified Redlich-Kwong equation for phase equilibrium and enthalpy calculations , 1992 .

[125]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[126]  M. M. Kimberley,et al.  Origin of ultramafic-hosted vein magnesite deposits , 1992 .

[127]  J. Connolly Multivariable phase diagrams; an algorithm based on generalized thermodynamics , 1990 .

[128]  H. Whitechurch,et al.  The death of an accretion zone as evidenced by the magmatic history of the Sumail ophiolite (Oman) , 1988 .

[129]  M. Beurrier,et al.  The Hawasina Basin: A fragment of a starved passive continental margin, thrust over the Arabian Platform during obduction of the Sumail Nappe , 1988 .

[130]  F. Boudier,et al.  Shear zones, thrusts and related magmatism in the Oman ophiolite: Initiation of thrusting on an oceanic ridge , 1988 .

[131]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[132]  R. Berman,et al.  Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-F , 1988 .

[133]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[134]  H. Helgeson Errata II; Thermodynamics of minerals, reactions, and aqueous solutions at high pressures and temperatures , 1985 .

[135]  Robert A. Duncan,et al.  A captured island chain in the coast range of Oregon and Washington , 1982 .

[136]  J. Malpas,et al.  The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex , 1982 .

[137]  J. Malpas,et al.  Petrochemistry and origin of sub-ophiolitic metamorphic and related rocks in the Oman Mountains , 1982, Journal of the Geological Society.

[138]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[139]  D. M. Kerrick,et al.  A modified Redlich-Kwong equation for H 2 O, CO 2 , and H 2 O-CO 2 mixtures at elevated pressures and temperatures , 1981 .

[140]  H. Taylor,et al.  An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges , 1981 .

[141]  James E. Wright,et al.  Uranium-lead isotopic ages of the Samail Ophiolite, Oman, with applications to Tethyan ocean ridge tectonics , 1981 .

[142]  R. Coleman,et al.  Cross Section Through the Peridotite in the Samail Ophiolite , 1981 .

[143]  G. Wasserburg,et al.  Sm‐Nd, Rb‐Sr, and 18O/16O isotopic systematics in an oceanic crustal section: Evidence from the Samail Ophiolite , 1981 .

[144]  R. Coleman,et al.  Sr isotopic tracer study of the Samail ophiolite, Oman. , 1981 .

[145]  N. Christensen,et al.  Geology and seismic structure of the northern section of the Oman ophiolite , 1981 .

[146]  E. Ghent,et al.  Metamorphism at the base of the Samail Ophiolite, southeastern Oman Mountains , 1981 .

[147]  M. Searle,et al.  The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[148]  S. Lippard,et al.  Volcanic rocks beneath the Semail Ophiolite nappe in the northern Oman mountains and their significance in the Mesozoic evolution of Tethys , 1980, Journal of the Geological Society.

[149]  K. Glennie Geology of the Oman Mountains , 1977 .

[150]  Y. Bottinga,et al.  Thermal aspects of sea-floor spreading and the nature of the oceanic crust , 1973 .

[151]  J. B. Rapp,et al.  Silica-Carbonate Alteration of Serpentine; Wall Rock Alteration in Mercury Deposits of the California Coast Ranges , 1973 .

[152]  R. Coleman,et al.  A Chemical Study of Serpentinization—Burro Mountain, California , 1971 .

[153]  M. Paterson,et al.  Experimental deformation of serpentinite and its tectonic implications , 1965 .

[154]  D. Green Ultramafic Breccias from the Musa Valley, Eastern Papua , 1961, Geological Magazine.

[155]  D. Lapham New Data on Deweylite , 1961 .

[156]  G. H. Francis The serpentinite mass in Glen Urquhart, Inverness-shire, Scotland , 1956 .

[157]  CARBONATE IN OLIVINE-RICH UNIT(S) ON MARS MAY HAVE FORMED AT LOW P(H2O) , 2020 .

[158]  Wei Yang,et al.  Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China , 2017 .

[159]  M. Searle,et al.  Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: implications for ophiolite obduction processes , 2014 .

[160]  E. S. Falk Carbonation of Peridotite in The Oman Ophiolite , 2014 .

[161]  A. Aftabi,et al.  Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran: Implications for possible epigenetic Cu–Au ore exploration in metaophiolites , 2013 .

[162]  P. Kelemen,et al.  Composition and Genesis of Depleted Mantle Peridotites from the Wadi Tayin Massif, Oman Ophiolite; Major and Trace Element Geochemistry, and Os Isotope and PGE Systematics , 2010 .

[163]  T. Skulski,et al.  THE POINT ROUSSE LISTVENITES, BAIE VERTE, NEWFOUNDLAND: ALTERED ULTRAMAFIC ROCKS WITH POTENTIAL FOR GOLD MINERALIZATION? , 2009 .

[164]  B. Jamtveit,et al.  Reaction induced fracturing during replacement processes , 2009 .

[165]  M. Benoit,et al.  Genesis of granitoids by interaction between mantle peridotites and hydrothermal fluids in oceanic spreading setting in the Oman Ophiolite , 2007 .

[166]  M. Styles,et al.  The geology and geophysics of the United Arab Emirates. Volume 1, Executive summary , 2006 .

[167]  A. Aftabi,et al.  MINERALOGY, GEOCHEMISTRY, STRUCTURAL POSITION AND A GENETIC MODEL FOR LISTVENITE IN EAST OF IRAN , 2005 .

[168]  Laure Gerbert-Gaillard Caractérisation Géochimique des Péridotites de l'ophiolite d'Oman : processus magmatiques aux limites lithosphère/asthenosphère , 2002 .

[169]  A. Wilde,et al.  Preliminary study of Cenozoic hydrothermal alteration and platinum deposition in the Oman Ophiolite , 2002 .

[170]  K. Farley (U-Th)/He Dating: Techniques, Calibrations, and Applications , 2002 .

[171]  M. Searle,et al.  Tectonic setting, origin, and obduction of the Oman ophiolite , 1999 .

[172]  Sm Searston Resource estimation and the Kunwarara magnesite deposit , 1999 .

[173]  D. Peate,et al.  Tectonic Implications of the Composition of Volcanic Arc Magmas , 1995 .

[174]  E. Oelkers,et al.  Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar , 1992 .

[175]  J. Urai,et al.  Kinematics of crystal growth in syntectonic fibrous veins. , 1991 .

[176]  M. Searle,et al.  The northern Oman Tethyan continental margin: stratigraphy, structure, concepts and controversies , 1990, Geological Society, London, Special Publications.

[177]  M. Beurrier,et al.  The Hawasina Nappes: stratigraphy, palaeogeography and structural evolution of a fragment of the south-Tethyan passive continental margin , 1990, Geological Society, London, Special Publications.

[178]  J. Smewing,et al.  Maastrichtian to early Tertiary stratigraphy and palaeogeography of the Central and Northern Oman Mountains , 1990, Geological Society, London, Special Publications.

[179]  D. Cooper Structure and sequence of thrusting in deep-water sediments during ophiolite emplacement in the south-central Oman Mountains , 1988 .

[180]  D. M. Carmichael Induced Stress and Secondary Mass Transfer: Thermodynamic Basis for the Tendency toward Constant-Volume Constraint in Diffusion Metasomatism , 1987 .

[181]  S. Lippard,et al.  The ophiolite of northern Oman , 1986 .

[182]  G. Stanger Silicified serpentinite in the Semail nappe of Oman , 1985 .

[183]  J. Malpas,et al.  Structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction , 1980, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[184]  G. Wasserburg,et al.  A neodymium, strontium, and oxygen isotopic study of the Cretaceous Samail ophiolite and implications for the petrogenesis and seawater-hydrothermal alteration of oceanic crust , 1980 .

[185]  H. Helgeson,et al.  Summary and critique of the thermodynamic properties of rock forming minerals , 1978 .

[186]  R. Montigny,et al.  Cortege ophiolitique et cortege oceanique, geochimie comparee et mode de genese , 1973 .

[187]  D. Green The Petrogenesis of the High-temperature Peridotite Intrusion in the Lizard Area, Cornwall , 1964 .