A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum

An important aspect of network-based analysis is robust node definition. This issue is critical for functional brain network analyses, as poor node choice can lead to spurious findings and misleading inferences about functional brain organization. Two sets of functional brain nodes from our group are well represented in the literature: (1) 264 volumetric regions of interest (ROIs) reported in Power et al., 2011) and (2) 333 cortical surface parcels reported in Gordon et al., 2016). However, subcortical and cerebellar structures are either incompletely captured or missing from these ROI sets. Therefore, properties of functional network organization involving the subcortex and cerebellum may be underappreciated thus far. Here, we apply a winner-take-all partitioning method to resting-state fMRI data to generate novel functionally-constrained ROIs in the thalamus, basal ganglia, amygdala, hippocampus, and cerebellum. We validate these ROIs in three datasets using several criteria, including agreement with existing literature and anatomical atlases. Further, we demonstrate that combining these ROIs with established cortical ROIs recapitulates and extends previously described functional network organization. This new set of ROIs is made publicly available for general use, including a full list of MNI coordinates and functional network labels.

[1]  S. Petersen,et al.  Control networks and hubs. , 2018, Psychophysiology.

[2]  Justin L. Vincent,et al.  Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. , 2008, Journal of neurophysiology.

[3]  M. Raichle,et al.  Anatomic Localization and Quantitative Analysis of Gradient Refocused Echo-Planar fMRI Susceptibility Artifacts , 1997, NeuroImage.

[4]  Nyaz Didehbani,et al.  Modular Brain Network Organization Predicts Response to Cognitive Training in Older Adults , 2016, PloS one.

[5]  J. Kaas Evolution of columns, modules, and domains in the neocortex of primates , 2012, Proceedings of the National Academy of Sciences.

[6]  T. Wassink,et al.  Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms , 1999, Biological Psychiatry.

[7]  Jonathan D. Power,et al.  Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data , 2018, Proceedings of the National Academy of Sciences.

[8]  A. Shekhar,et al.  Eyeblink conditioning deficits indicate timing and cerebellar abnormalities in schizophrenia , 2005, Brain and Cognition.

[9]  Mitchell Glickstein,et al.  Cerebellum: Connections and Functions , 2008, The Cerebellum.

[10]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[11]  Yong He,et al.  Addressing head motion dependencies for small-world topologies in functional connectomics , 2013, Front. Hum. Neurosci..

[12]  Evan M. Gordon,et al.  Functional System and Areal Organization of a Highly Sampled Individual Human Brain , 2015, Neuron.

[13]  S. M. Morton,et al.  Prism adaptation during walking generalizes to reaching and requires the cerebellum. , 2004, Journal of neurophysiology.

[14]  N C Andreasen,et al.  Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Christos Davatzikos,et al.  Benchmarking confound regression strategies for the control of motion artifact in studies of functional connectivity , 2016, 1608.03616.

[16]  Maxwell A. Bertolero,et al.  The Human Thalamus Is an Integrative Hub for Functional Brain Networks , 2016, The Journal of Neuroscience.

[17]  Andreea C. Bostan,et al.  The basal ganglia and the cerebellum: nodes in an integrated network , 2018, Nature Reviews Neuroscience.

[18]  D R Rajput,et al.  Accuracy of clinical diagnosis of idiopathic Parkinson's disease. , 1993, Journal of neurology, neurosurgery, and psychiatry.

[19]  Jonathan D. Power,et al.  Evidence for Hubs in Human Functional Brain Networks , 2013, Neuron.

[20]  Michael W. Cole,et al.  Mapping the human brain's cortical-subcortical functional network organization , 2018, NeuroImage.

[21]  I. Gath,et al.  On time delay estimation of epileptic EEG , 1994, IEEE Transactions on Biomedical Engineering.

[22]  M. Fox,et al.  Intrinsic functional relations between human cerebral cortex and thalamus. , 2008, Journal of neurophysiology.

[23]  Luke J. Chang,et al.  Emotion, decision-making and the brain. , 2008, Advances in health economics and health services research.

[24]  James M. Shine,et al.  Subcortical contributions to large-scale network communication , 2016, Neuroscience & Biobehavioral Reviews.

[25]  Kevin J. Black,et al.  Neurobiology and Functional Anatomy of Tic Disorders , 2013 .

[26]  D. S. O'Leary,et al.  Prism adaptation in schizophrenia , 2003, Schizophrenia Research.

[27]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[28]  Suzanne N. Haber,et al.  Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum , 2017, NeuroImage.

[29]  Mark A. Elliott,et al.  Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth , 2012, NeuroImage.

[30]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[31]  C. Butts Social network analysis: A methodological introduction , 2008 .

[32]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[33]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[34]  Timothy O. Laumann,et al.  An approach for parcellating human cortical areas using resting-state correlations , 2014, NeuroImage.

[35]  M. Smith,et al.  The Core System , 2017 .

[36]  S. Petersen,et al.  Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI , 2016, Developmental science.

[37]  Eva Meisenzahl,et al.  Enlargement of the amygdala in patients with a first episode of major depression , 2002, Biological Psychiatry.

[38]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[39]  J. Pillai Functional Connectivity. , 2017, Neuroimaging clinics of North America.

[40]  Erin K. Molloy,et al.  Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies , 2015, Brain Connect..

[41]  C. Padoa-Schioppa,et al.  Neurons in the orbitofrontal cortex encode economic value , 2006, Nature.

[42]  Kevin J. Black,et al.  Atypical Functional Connectivity in Tourette Syndrome Differs Between Children and Adults , 2018 .

[43]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[44]  Evan M. Gordon,et al.  On the Stability of BOLD fMRI Correlations , 2016, Cerebral cortex.

[45]  Evan M. Gordon,et al.  Integrative and Network-Specific Connectivity of the Basal Ganglia and Thalamus Defined in Individuals , 2019, Neuron.

[46]  Peter H. Schurr,et al.  Human Thalamus , 1970 .

[47]  Ian R. Wickersham,et al.  Hierarchical Connectivity and Connection-Specific Dynamics in the Corticospinal–Corticostriatal Microcircuit in Mouse Motor Cortex , 2012, The Journal of Neuroscience.

[48]  Abraham Z. Snyder,et al.  On time delay estimation and sampling error in resting-state fMRI , 2019, NeuroImage.

[49]  O. Sporns,et al.  Network hubs in the human brain , 2013, Trends in Cognitive Sciences.

[50]  S. Haber,et al.  Estimates of Projection Overlap and Zones of Convergence within Frontal-Striatal Circuits , 2014, The Journal of Neuroscience.

[51]  Rodrigo M. Braga,et al.  Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity , 2017, Neuron.

[52]  O. Sporns Networks of the Brain , 2010 .

[53]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[54]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[55]  T. Woolsey,et al.  A Review for Medical Students The Brain Atlas: A Visual Guide to the Human Central Nervous System, 3rd ed. , 2009, McGill journal of medicine : MJM : an international forum for the advancement of medical sciences by students.

[56]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[57]  M. Moser,et al.  Functional differentiation in the hippocampus , 1998, Hippocampus.

[58]  Adriana Galván,et al.  At risk of being risky: The relationship between “brain age” under emotional states and risk preference , 2017, Developmental Cognitive Neuroscience.

[59]  R. Guillery Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. , 1995, Journal of anatomy.

[60]  D. Bassett,et al.  Emergence of system roles in normative neurodevelopment , 2015, Proceedings of the National Academy of Sciences.

[61]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[62]  V. Calhoun,et al.  Selective changes of resting-state networks in individuals at risk for Alzheimer's disease , 2007, Proceedings of the National Academy of Sciences.

[63]  Lawrence L. Wald,et al.  Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters , 2005, NeuroImage.

[64]  Danielle S Bassett,et al.  Brain graphs: graphical models of the human brain connectome. , 2011, Annual review of clinical psychology.

[65]  Christopher L. Asplund,et al.  The organization of the human cerebellum estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[66]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[67]  H. Duvernoy The Human Hippocampus: An Atlas of Applied Anatomy , 1988 .

[68]  Arthur F. Kramer,et al.  Brain Network Modularity Predicts Exercise-Related Executive Function Gains in Older Adults , 2018, Front. Aging Neurosci..

[69]  M. Greicius,et al.  Resting-state functional connectivity reflects structural connectivity in the default mode network. , 2009, Cerebral cortex.

[70]  E. Tulving,et al.  Episodic and declarative memory: Role of the hippocampus , 1998, Hippocampus.

[71]  A. Rodríguez-Fornells,et al.  Functional Connectivity of Reward Processing in the Brain , 2008, Front. Hum. Neurosci..

[72]  Timothy O. Laumann,et al.  Developmental Changes in the Organization of Functional Connections between the Basal Ganglia and Cerebral Cortex , 2014, The Journal of Neuroscience.

[73]  Daniel S. Margulies,et al.  Functional connectivity of the human amygdala using resting state fMRI , 2009, NeuroImage.

[74]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[75]  S. Petersen,et al.  Brain Networks and Cognitive Architectures , 2015, Neuron.

[76]  C. T. Butts,et al.  Revisiting the Foundations of Network Analysis , 2009, Science.

[77]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[78]  K. Hocke,et al.  Gap filling and noise reduction of unevenly sampled data by means of the Lomb-Scargle periodogram , 2008 .

[79]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[80]  R. Ferrante,et al.  Neuropathological Classification of Huntington's Disease , 1985, Journal of neuropathology and experimental neurology.

[81]  Christos Davatzikos,et al.  Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity , 2017, NeuroImage.

[82]  Evan M. Gordon,et al.  Individual-specific features of brain systems identified with resting state functional correlations , 2017, NeuroImage.

[83]  Jeremy D. Schmahmann,et al.  Triple Representation of Language, Working Memory, Social and Emotion Processing in the Cerebellum: Convergent Evidence from Task and Seed-Based Resting-State Fmri Analyses in a Single Large Cohort , 2018, bioRxiv.

[84]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[85]  M. Fox,et al.  Noninvasive functional and structural connectivity mapping of the human thalamocortical system. , 2010, Cerebral cortex.

[86]  W T Thach,et al.  The cerebellum and the adaptive coordination of movement. , 1992, Annual review of neuroscience.

[87]  N Ramnani,et al.  A probabilistic MR atlas of the human cerebellum , 2009, NeuroImage.

[88]  J. Schmahmann Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. , 2004, The Journal of neuropsychiatry and clinical neurosciences.

[89]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[90]  S. Petersen,et al.  Characterizing the Hemodynamic Response: Effects of Presentation Rate, Sampling Procedure, and the Possibility of Ordering Brain Activity Based on Relative Timing , 2000, NeuroImage.

[91]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[92]  Steven E. Petersen,et al.  Separable responses to error, ambiguity, and reaction time in cingulo-opercular task control regions , 2014, NeuroImage.

[93]  Timothy O. Laumann,et al.  Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. , 2016, Cerebral cortex.

[94]  S. Kühn,et al.  Day2day: investigating daily variability of magnetic resonance imaging measures over half a year , 2017, BMC Neuroscience.

[95]  R Cameron Craddock,et al.  A whole brain fMRI atlas generated via spatially constrained spectral clustering , 2012, Human brain mapping.

[96]  Jie Lu,et al.  Selective Changes of Resting-State Brain Oscillations in aMCI: An fMRI Study Using ALFF , 2014, BioMed research international.

[97]  P. Strick,et al.  Cerebellum and nonmotor function. , 2009, Annual review of neuroscience.

[98]  Olaf Sporns,et al.  Disrupted modular architecture of cerebellum in schizophrenia: a graph theoretic analysis. , 2014, Schizophrenia bulletin.

[99]  Steven E Petersen,et al.  Emergent Functional Network Effects in Parkinson Disease. , 2018, Cerebral cortex.

[100]  Julie A. Fiez,et al.  The cerebellum and language: Persistent themes and findings , 2016, Brain and Language.

[101]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[102]  Geert Jan Biessels,et al.  A Critical Appraisal of the Hippocampal Subfield Segmentation Package in FreeSurfer , 2014, Front. Aging Neurosci..

[103]  Evan M. Gordon,et al.  Spatial and Temporal Organization of the Individual Human Cerebellum , 2018, Neuron.

[104]  Steven E Petersen,et al.  Evaluating the Prediction of Brain Maturity From Functional Connectivity After Motion Artifact Denoising. , 2019, Cerebral cortex.

[105]  J. Buchwald,et al.  Eyeblink conditioning deficits in the old cat , 1983, Neurobiology of Aging.

[106]  Sharon L. Thompson-Schill,et al.  A Functional Cartography of Cognitive Systems , 2015, PLoS Comput. Biol..

[107]  Jessica R. Cohen,et al.  The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition , 2016, The Journal of Neuroscience.

[108]  B. Biswal,et al.  Functional connectivity of human striatum: a resting state FMRI study. , 2008, Cerebral cortex.

[109]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[110]  R. Buckner,et al.  The organization of the human striatum estimated by intrinsic functional connectivity. , 2012, Journal of neurophysiology.

[111]  E. Phelps Emotion and cognition: insights from studies of the human amygdala. , 2006, Annual review of psychology.

[112]  Karl J. Friston,et al.  Movement‐Related effects in fMRI time‐series , 1996, Magnetic resonance in medicine.

[113]  Evan M. Gordon,et al.  Three Distinct Sets of Connector Hubs Integrate Human Brain Function. , 2018, Cell reports.

[114]  S. Petersen,et al.  Concepts and principles in the analysis of brain networks , 2011, Annals of the New York Academy of Sciences.

[115]  Ulman Lindenberger,et al.  Local temporal variability reflects functional integration in the human brain , 2018, NeuroImage.

[116]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[117]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[118]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[119]  Evan M. Gordon,et al.  Precision Functional Mapping of Individual Human Brains , 2017, Neuron.

[120]  A. Damasio,et al.  Emotion, decision making and the orbitofrontal cortex. , 2000, Cerebral cortex.

[121]  A. Damasio,et al.  Deciding Advantageously Before Knowing the Advantageous Strategy , 1997, Science.

[122]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[123]  Mark D'Esposito,et al.  Focal Brain Lesions to Critical Locations Cause Widespread Disruption of the Modular Organization of the Brain , 2012, Journal of Cognitive Neuroscience.

[124]  Kevin J. Black,et al.  Atypical Functional Connectivity in Tourette Syndrome Differs Between Children and Adults , 2018, Biological Psychiatry.

[125]  Susanna Sallstroem,et al.  Functional Differentiation , 2009, Modern Condensed Matter Physics.

[126]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[127]  Angus W. MacDonald,et al.  Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia , 2015, Neuropsychologia.

[128]  Abraham Z. Snyder,et al.  A brief history of the resting state: The Washington University perspective , 2012, NeuroImage.

[129]  Peter Bartel,et al.  Amygdala, affect and cognition: evidence from 10 patients with Urbach-Wiethe disease. , 2003, Brain : a journal of neurology.

[130]  M. Dylan Tisdall,et al.  Correction of respiratory artifacts in MRI head motion estimates , 2018, NeuroImage.

[131]  E. Maguire,et al.  The Human Hippocampus and Spatial and Episodic Memory , 2002, Neuron.

[132]  Timothy O. Laumann,et al.  Data Quality Influences Observed Links Between Functional Connectivity and Behavior , 2017, Cerebral cortex.

[133]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[134]  Evan M. Gordon,et al.  Re-emergence of modular brain networks in stroke recovery , 2018, Cortex.

[135]  Timothy O. Laumann,et al.  Methods to detect, characterize, and remove motion artifact in resting state fMRI , 2014, NeuroImage.

[136]  Evan M. Gordon,et al.  Long-term neural and physiological phenotyping of a single human , 2015, Nature Communications.

[137]  Damien A. Fair,et al.  Defining functional areas in individual human brains using resting functional connectivity MRI , 2008, NeuroImage.

[138]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[139]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[140]  Jonathan M. Koller,et al.  Brain structure in pediatric Tourette syndrome , 2016, Molecular Psychiatry.

[141]  P. Thuras,et al.  Purkinje Cell Size Is Reduced in Cerebellum of Patients with Autism , 2002, Cellular and Molecular Neurobiology.

[142]  Elisabeth J. Ploran,et al.  Distinct Stages of Moment‐to‐Moment Processing in the Cinguloopercular and Frontoparietal Networks , 2017, Cerebral cortex.

[143]  Ludwig Kappos,et al.  Multivariate pattern classification of gray matter pathology in multiple sclerosis , 2012, NeuroImage.

[144]  R. F. Thompson,et al.  Disruption of classical eyelid conditioning after cerebellar lesions: damage to a memory trace system or a simple performance deficit? , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[145]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[146]  M. Witter,et al.  Neuropsychology of infarctions in the thalamus: a review , 2000, Neuropsychologia.

[147]  Thomas T. Liu,et al.  A component based noise correction method (CompCor) for BOLD and perfusion based fMRI , 2007, NeuroImage.

[148]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[149]  Abraham Z. Snyder,et al.  Maturing Thalamocortical Functional Connectivity Across Development , 2010, Front. Syst. Neurosci..

[150]  Bill Seeley,et al.  Neurodegenerative diseases target large-scale human brain networks , 2010, Alzheimer's & Dementia.

[151]  Theodore P. Zanto,et al.  Fronto-parietal network: flexible hub of cognitive control , 2013, Trends in Cognitive Sciences.

[152]  Steven E Petersen,et al.  Tasks Driven by Perceptual Information Do Not Recruit Sustained BOLD Activity in Cingulo-Opercular Regions. , 2016, Cerebral cortex.

[153]  Jonathan D. Power,et al.  A Parcellation Scheme for Human Left Lateral Parietal Cortex , 2010, Neuron.