A BERRY-ESSEEN TYPE BOUND OF REGRESSION ESTIMATOR BASED ON LINEAR PROCESS ERRORS

Consider the nonparametric regression model Yni = g(xni)+ ϵni (1 ≤ i ≤ n), where g(·) is an unknown regression function, xni are known fixed design points, and the correlated errors {ϵni, 1 ≤ i ≤ n} have the same distribution as {Vi, 1 ≤ i ≤ n}, here Vt = P∞=−∞ ψj et−j with P∞ j=−∞ |ψj | < ∞ and {et} are negatively associated random variables. Under appropriate conditions, we derive a Berry-Esseen type bound for the estimator of g(·). As corollary, by choice of the weights, the Berry- Esseen type bound can attain O(n −1/4 (log n) 3/4 ).

[1]  Zongwu Cai,et al.  Berry-esseen bounds for smooth estimator of a distribution function under association , 1999 .

[2]  A. Khursheed,et al.  Positive dependence in multivariate distributions , 1981 .

[3]  Han-ying Liang,et al.  Complete convergence for weighted sums of NA sequences , 1999 .

[4]  Alexander A. Georgiev,et al.  Nonparametric function recovering from noisy observations , 1986 .

[5]  Han-Ying Liang,et al.  On the convergence of moving average processes under dependent conditions , 2003 .

[6]  A. Georgiev Consistent nonparametric multiple regression: the fixed design case , 1988 .

[7]  George G. Roussas,et al.  Asymptotic normality of the kernel estimate of a probability density function under association , 2000 .

[8]  Qi-Man Shao,et al.  A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables , 2000 .

[9]  P. V. Rao,et al.  Berry-esseen bound for the kaplan-meier estimator , 1989 .

[10]  Local Properties of Function Fitting Estimates with Application to System Identification , 1985 .

[11]  Hans-Georg Müller,et al.  Weak and universal consistency of moving weighted averages , 1987 .

[12]  S. Yakowitz,et al.  Fixed-design regression for linear time series , 1996 .

[13]  Han-Ying Liang,et al.  Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences , 2005 .

[14]  George G. Roussas,et al.  Consistent regression estimation with fixed design points under dependence conditions , 1989 .

[15]  George G. Roussas,et al.  Asymptotic normality of random fields of positively or negatively associated processes , 1994 .

[16]  Przemysław Matuła,et al.  A note on the almost sure convergence of sums of negatively dependent random variables , 1992 .

[17]  Yanqin Fan Consistent nonparametric multiple regression for dependent heterogeneous processes: the fixed design case , 1990 .

[18]  Q. Shao,et al.  The law of the iterated logarithm for negatively associated random variables , 1999 .

[19]  K. Joag-dev,et al.  Negative Association of Random Variables with Applications , 1983 .

[20]  Moment inequalities and weak convergence for negatively associated sequences , 1997 .

[21]  Shanchao Yang Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples , 2003 .

[22]  V. Statulevičius,et al.  Limit Theorems of Probability Theory , 2000 .

[23]  V. V. Petrov,et al.  Limit Theorems of Probability Theory , 2000 .

[24]  Han-ying Liang Complete convergence for weighted sums of negatively associated random variables , 2000 .

[25]  G. Roussas,et al.  Kaplan-Meier Estimator under Association , 1998 .

[26]  George G. Roussas,et al.  Fixed design regression for time series: asymptotic normality , 1992 .

[27]  Jong-Il Baek,et al.  WEIGHTED SUMS OF NEGATIVELY ASSOCIATED RANDOM VARIABLES , 2006 .