Response to ‘Comments on “Combining spatial transition probabilities for stochastic simulation of categorical fields” with communications on some issues related to Markov chain geostatistics’
暂无分享,去创建一个
[1] A. Journel. Combining Knowledge from Diverse Sources: An Alternative to Traditional Data Independence Hypotheses , 2002 .
[2] D. Allard,et al. Comments on ‘ An efficient maximum entropy approach for categorical variable prediction ’ by , 2011 .
[3] R. Froidevaux,et al. An efficient maximum entropy approach for categorical variable prediction , 2011 .
[4] Weidong Li,et al. Comments on ‘Combining spatial transition probabilities for stochastic simulation of categorical fields’ with communications on some issues related to Markov chain geostatistics , 2012, Int. J. Geogr. Inf. Sci..
[5] Li Weidong. Transiogram: A spatial relationship measure for categorical data , 2006 .
[6] William T. Freeman,et al. Understanding belief propagation and its generalizations , 2003 .
[7] S. Krishnan. The Tau Model for Data Redundancy and Information Combination in Earth Sciences: Theory and Application , 2008 .
[8] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[9] D. K. Pickard,et al. Unilateral Markov fields , 1980, Advances in Applied Probability.
[10] Chuanrong Zhang,et al. Comments on ‘An efficient maximum entropy approach for categorical variable prediction’ by D. Allard, D. D'Or & R. Froidevaux , 2012 .
[11] Xavier Emery. On the Existence of Mosaic and Indicator Random Fields with Spherical, Circular, and Triangular Variograms , 2010 .
[12] G. Fogg,et al. Transition probability-based indicator geostatistics , 1996 .
[13] Sanjiang Li,et al. A complete classification of topological relations using the 9‐intersection method , 2006, Int. J. Geogr. Inf. Sci..
[14] G. Christakos. A Bayesian/maximum-entropy view to the spatial estimation problem , 1990 .
[15] Michael F. Goodchild,et al. Combining spatial transition probabilities for stochastic simulation of categorical fields , 2011, Int. J. Geogr. Inf. Sci..
[16] John Haslett,et al. Maximum likelihood discriminant analysis on the plane using a Markovian model of spatial context , 1985, Pattern Recognit..
[17] D. K. Pickard. A curious binary lattice process , 1977, Journal of Applied Probability.
[18] P. Bogaert. Spatial prediction of categorical variables: the Bayesian maximum entropy approach , 2002 .
[19] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[20] Weidong Li,et al. Markov Chain Random Fields for Estimation of Categorical Variables , 2007 .
[21] Weidong Li,et al. Transiograms for Characterizing Spatial Variability of Soil Classes , 2007 .
[22] Weidong Li,et al. A Generalized Markov Chain Approach for Conditional Simulation of Categorical Variables from Grid Samples , 2006, Trans. GIS.
[23] J. M. Hammersley,et al. Markov fields on finite graphs and lattices , 1971 .
[24] J. Chilès,et al. Geostatistics: Modeling Spatial Uncertainty , 1999 .
[25] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .