Fixed-structure LPV discrete-time controller design with induced l2-norm and performance

ABSTRACT A new method for the design of fixed-structure dynamic output-feedback linear parameter-varying (LPV) controllers for discrete-time LPV systems with bounded scheduling parameter variations is presented. Sufficient conditions for the stability, and induced l2-norm performance of a given LPV system are represented through a set of linear matrix inequalities (LMIs). These LMIs are used in an iterative algorithm with monotonic convergence for LPV controller design. Extension to the case of uncertain scheduling parameter value is considered as well. Controller parameters appear directly as decision variables in the optimisation program, which enables preserving a desired controller structure in addition to the low order. Efficiency of the proposed method is illustrated on a simulation example, with an iterative convex optimisation scheme used for the improvement of the control system performance.

[1]  Masayuki Sato,et al.  Gain-scheduled output-feedback controllers depending solely on scheduling parameters via parameter-dependent Lyapunov functions , 2011, Autom..

[2]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[3]  Michael Athans,et al.  Survey of decentralized control methods for large scale systems , 1978 .

[4]  Masayuki Sato,et al.  Gain-Scheduled Observers Using Inexact Scheduling Parameters , 2012, ROCOND.

[5]  Masayuki Sato,et al.  Discrete-time Gain-Scheduled Output-Feedback controllers exploiting inexact scheduling parameters via Parameter-Dependent Lyapunov Functions , 2011, IEEE Conference on Decision and Control and European Control Conference.

[6]  W. P. M. H. Heemels,et al.  Observer-Based Control of Discrete-Time LPV Systems With Uncertain Parameters $ $ , 2010, IEEE Transactions on Automatic Control.

[7]  Carolyn L. Beck Coprime factors reduction methods for linear parameter varying and uncertain systems , 2006, Syst. Control. Lett..

[8]  Adrian S. Lewis,et al.  HIFOO - A MATLAB package for fixed-order controller design and H ∞ optimization , 2006 .

[9]  Karina A. Barbosa,et al.  Robust /spl Hscr//sub 2/ filtering for discrete-time uncertain linear systems using parameter-dependent Lyapunov functions , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[10]  Alireza Karimi,et al.  Frequency-domain robust control toolbox , 2013, 52nd IEEE Conference on Decision and Control.

[11]  Alireza Karimi,et al.  An LMI formulation of fixed-order H∞ and H2 controller design for discrete-time systems with polytopic uncertainty , 2013, 52nd IEEE Conference on Decision and Control.

[12]  Alireza Karimi,et al.  Fixed-order LPV controller design for rejection of a sinusoidal disturbance with time-varying frequency , 2012, 2012 IEEE International Conference on Control Applications.

[13]  Didier Henrion,et al.  Polynomial LPV synthesis applied to turbofan engines , 2007 .

[14]  Fen Wu,et al.  A generalized LPV system analysis and control synthesis framework , 2001 .

[15]  Carsten W. Scherer,et al.  LMI Relaxations in Robust Control , 2006, Eur. J. Control.

[16]  Pierre Apkarian,et al.  Advanced gain-scheduling techniques for uncertain systems , 1998, IEEE Trans. Control. Syst. Technol..

[17]  Alireza Karimi,et al.  A toolbox for robust PID controller tuning using convex optimization , 2012 .

[18]  P. Peres,et al.  Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions , 2005 .

[19]  Massimiliano Mattei,et al.  Gain scheduled control for discrete‐time systems depending on bounded rate parameters , 2005 .

[20]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[21]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[22]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[23]  J. Geromel,et al.  LMI characterization of structural and robust stability: the discrete-time case , 1999 .

[24]  A. Garulli,et al.  Positive Polynomials in Control , 2005 .

[25]  A. Packard,et al.  Induced L/sub 2/-norm control for LPV system with bounded parameter variation rates , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[26]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[27]  Dario Piga,et al.  Input-Output LPV Model identification with guaranteed quadratic stability , 2012 .

[28]  Ricardo C. L. F. Oliveira,et al.  Time-varying discrete-time linear systems with bounded rates of variation: Stability analysis and control design , 2009, Autom..

[29]  Giulio Panzani,et al.  Active motorcycle braking via direct data-driven load transfer scheduling , 2012 .

[30]  P. Apkarian,et al.  Nonsmooth H ∞ synthesis , 2005 .

[31]  Jakob Stoustrup,et al.  Structured control of affine linear parameter varying systems , 2011, Proceedings of the 2011 American Control Conference.

[32]  Geir E. Dullerud,et al.  Distributed control design for spatially interconnected systems , 2003, IEEE Trans. Autom. Control..

[33]  Jan Swevers,et al.  Gain‐scheduled dynamic output feedback control for discrete‐time LPV systems , 2012 .

[34]  Alireza Karimi,et al.  Fixed-order LPV Controller Design for LPV Systems by Convex Optimization1 1This research work is financially supported by the Swiss National Science Foundation under Grant No. 200021-121749. , 2013 .

[35]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[36]  P. V. D. Hof,et al.  Crucial Aspects of Zero-Order Hold LPV State-Space System Discretization ⋆ , 2008 .

[37]  Sergio M. Savaresi,et al.  Direct data-driven control of linear parameter-varying systems , 2013, 52nd IEEE Conference on Decision and Control.

[38]  Charles Poussot-Vassal,et al.  A new semi-active suspension control strategy through LPV technique , 2008 .

[39]  Roland Toth,et al.  Modeling and Identification of Linear Parameter-Varying Systems , 2010 .

[40]  Roland Tóth,et al.  Asymptotically optimal orthonormal basis functions for LPV system identification , 2009, Autom..

[41]  Carlos E. de Souza,et al.  Robust /spl Hscr//sub /spl infin// filtering for discrete-time linear systems with uncertain time-varying parameters , 2006, IEEE Transactions on Signal Processing.