A model of ballistic helium transport during helium-induced fuzz growth in tungsten

[1]  J.H. Yu,et al.  Material migration in W and Mo during bubble growth and fuzz formation , 2021, Nuclear Fusion.

[2]  Guangjiu Lei,et al.  Tensile stress-driven cracking of W fuzz over W crystal under fusion-relevant He ion irradiations , 2020, Nuclear Fusion.

[3]  D. Maroudas,et al.  On the origin of ‘fuzz’ formation in plasma-facing materials , 2019, Nuclear Fusion.

[4]  R. Pitts,et al.  A growth/annealing equilibrium model for helium-induced nanostructure with application to ITER , 2019, Nuclear Materials and Energy.

[5]  C. Parish,et al.  Nucleation and growth of tungsten nanotendrils grown under divertor-like conditions , 2018, Journal of Nuclear Materials.

[6]  T. Schwarz-Selinger,et al.  Motion of W and He atoms during formation of W fuzz , 2018 .

[7]  R. Pitts,et al.  The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets , 2018 .

[8]  I. Kaganovich,et al.  Modeling of reduced secondary electron emission yield from a foam or fuzz surface , 2017, 1710.01636.

[9]  E. Westerhof,et al.  Molecular dynamics simulations of ballistic He penetration into W fuzz , 2016 .

[10]  D. Riley,et al.  Observation of a helium ion energy threshold for retention in tungsten exposed to hydrogen/helium mixture plasma , 2016 .

[11]  R. Doerner,et al.  Tungsten ‘fuzz’ growth re-examined: the dependence on ion fluence in non-erosive and erosive helium plasma , 2015 .

[12]  D. Maroudas,et al.  Challenges and opportunities of modeling plasma–surface interactions in tungsten using high-performance computing , 2015 .

[13]  G. Wright,et al.  Dynamic measurement of the helium concentration of evolving tungsten nanostructures using Elastic Recoil Detection during plasma exposure , 2015 .

[14]  S. Krasheninnikov,et al.  The Role of the Adatom Diffusion in the Tungsten Fuzz Growth , 2015 .

[15]  C. Domain,et al.  Modelling self trapping and trap mutation in tungsten using DFT and Molecular Dynamics with an empirical potential based on DFT , 2014 .

[16]  Jochen Linke,et al.  Research status and issues of tungsten plasma facing materials for ITER and beyond , 2014 .

[17]  N. Ohno,et al.  Influence of crystal orientation on damages of tungsten exposed to helium plasma , 2013 .

[18]  Brian D. Wirth,et al.  Interatomic potentials for simulation of He bubble formation in W , 2013 .

[19]  Y. Martynenko,et al.  Model of fuzz formation on a tungsten surface , 2012 .

[20]  S. Takamura,et al.  TEM analysis of high temperature annealed W nanostructure surfaces , 2012 .

[21]  S. Krasheninnikov Viscoelastic model of tungsten ‘fuzz’ growth , 2011 .

[22]  N. Ohno,et al.  TEM observation of the growth process of helium nanobubbles on tungsten: Nanostructure formation mechanism , 2011 .

[23]  R. Doerner,et al.  Sputtering properties of tungsten ‘fuzzy’ surfaces , 2011 .

[24]  R. Doerner,et al.  Nanostructure formation on tungsten exposed to low-pressure rf helium plasmas: A study of ion energy threshold and early stage growth , 2011 .

[25]  Wataru Sakaguchi,et al.  Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions , 2009 .

[26]  K. Tokunaga,et al.  The effects of high fluence mixed-species (deuterium, helium, beryllium) plasma interactions with tungsten , 2009 .

[27]  S. Takamura,et al.  Prompt ignition of a unipolar arc on helium irradiated tungsten , 2009 .

[28]  S. Takamura,et al.  Sub-ms laser pulse irradiation on tungsten target damaged by exposure to helium plasma , 2007 .

[29]  C. Domain,et al.  Migration energy of He in W revisited by ab initio calculations. , 2006, Physical review letters.

[30]  M. Ye,et al.  Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II , 2004 .

[31]  H. Ullmaier The influence of helium on the bulk properties of fusion reactor structural materials , 1984 .