Asymmetric Bioreduction of CC Bonds using Enoate Reductases OPR1, OPR3 and YqjM: Enzyme‐Based Stereocontrol

Three cloned enoate reductases from the "old yellow enzyme" family of flavoproteins were investigated in the asymmetric bioreduction of activated alkenes. 12-Oxophytodienoate reductase isoenzymes OPR1 and OPR3 from Lycopersicon esculentum (tomato), and YqjM from Bacillus subtilis displayed a remarkably broad substrate spectrum by reducing α,β-unsaturated aldehydes, ketones, maleimides and nitroalkenes. The reaction proceeded with absolute chemoselectivity - only the conjugated C=C bond was reduced, while isolated olefins and carbonyl groups remained intact - with excellent stereoselectivities (ees up to >99%). Upon reduction of a nitroalkene, the stereochemical outcome could be determined via choice of the appropriate enzyme (OPR1 versus OPR3 or YqjM), which furnished the corresponding enantiomeric nitroalkanes in excellent ee. Molecular modelling suggests that this "enzyme-based stereocontrol" is caused by subtle differences within the active site geometries.

[1]  G. Bourenkov,et al.  The 1.3 Å Crystal Structure of the Flavoprotein YqjM Reveals a Novel Class of Old Yellow Enzymes* , 2005, Journal of Biological Chemistry.

[2]  R. Noyori Asymmetrische Katalyse: Kenntnisstand und Perspektiven (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[3]  J. Chaparro-Riggers,et al.  Comparison of three enoate reductases and their potential use for biotransformations , 2007 .

[4]  R. Croteau,et al.  cDNA isolation, functional expression, and characterization of (+)-α-pinene synthase and (−)-α-pinene synthase from loblolly pine (Pinus taeda): Stereocontrol in pinene biosynthesis , 2003 .

[5]  Bernhard Hauer,et al.  Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. , 2007, Current opinion in chemical biology.

[6]  B. Hauer,et al.  Stereospecific alkyne reduction: novel activity of old yellow enzymes. , 2007, Angewandte Chemie.

[7]  N. Ono The nitro group in organic synthesis , 2001 .

[8]  Ryoji Noyori Prof. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture) , 2002 .

[9]  R. Huber,et al.  X-ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. , 2001, Structure.

[10]  A. Meyers,et al.  Enantioselective alkylation of ketones via chiral, nonracemic lithioenamines. An asymmetric synthesis of .alpha.-alkyl and .alpha.,.alpha.'-dialkyl cyclic ketones , 1981 .

[11]  H. Griengl,et al.  The use of substrate engineering in biohydroxylation. , 2002, Current opinion in biotechnology.

[12]  J. Stewart,et al.  Asymmetric Bioreductions of β-Nitro Acrylates as a Route to Chiral β2-Amino Acids , 2006 .

[13]  B. Hauer,et al.  Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase , 2007, Biotechnology and bioengineering.

[14]  G. Gil,et al.  Microbial Oxidation of Amines: A Preliminary Investigation on the Resolution of Racemic 1-Phenylethyl Amine , 2002 .

[15]  R. Huber,et al.  Crystal structure of 12-oxophytodienoate reductase 3 from tomato: Self-inhibition by dimerization , 2006, Proceedings of the National Academy of Sciences.

[16]  Yuya Sato,et al.  Hydrogenation of the C–C double bond of maleimides with cultured plant cells , 2005 .

[17]  P. Lau,et al.  Monooxygenase-catalyzed Baeyer–Villiger oxidations: CHMO versus CPMO , 2003 .

[18]  P. Macheroux,et al.  Asymmetric bioreduction of activated alkenes using cloned 12-oxophytodienoate reductase isoenzymes OPR-1 and OPR-3 from Lycopersicon esculentum (tomato): a striking change of stereoselectivity. , 2007, Angewandte Chemie.

[19]  K. Hult,et al.  Molecular Modelling of Chymotrypsin-Substrate Interactions: Calculation of Enantioselectivity , 1993 .

[20]  A. Müller,et al.  [RES4]- AS AN UNUSUALLY STRONG OMICRON-ACCEPTOR LIGAND - [CL2FE(RES4)FECL2]2-, A LINEAR HETEROMETALLIC CLUSTER WITH AN ODD NUMBER OF ELECTRONS , 1986 .

[21]  B. Hauer,et al.  Enzymatic reduction of the α, β-unsaturated carbon bond in citral , 2006 .

[22]  B. Hauer,et al.  Asymmetric whole-cell bioreduction of an α,β-unsaturated aldehyde (citral): competing prim-alcohol dehydrogenase and C–C lyase activities , 2006 .

[23]  Hiroshi Yanagawa,et al.  Inversion of enantioselectivity of asymmetric biocatalytic decarboxylation by site-directed mutagenesis based on the reaction mechanism. , 2005, Chemical communications.

[24]  M. Kataoka,et al.  Old Yellow Enzyme from Candida macedoniensis Catalyzes the Stereospecific Reduction of the C=C Bond of Ketoisophorone , 2002, Bioscience, biotechnology, and biochemistry.

[25]  H. Ohta,et al.  Asymmetric reduction of nitro olefins by fermenting bakers' yeast , 1989 .

[26]  D. MacMillan,et al.  Organocatalytic transfer hydrogenation of cyclic enones. , 2006, Journal of the American Chemical Society.

[27]  E. Hedenström,et al.  Structure versus enantioselectivity in Pseudomonas cepacia lipase catalysed transesterifications. Enantioselective acylations of primary 2-methylalcohols , 1997 .

[28]  P. Karplus,et al.  Structure‐function relations for old yellow enzyme , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  Ryoji Noyori,et al.  Asymmetric catalysis: science and opportunities (Nobel lecture). , 2002, Angewandte Chemie.

[30]  B. List,et al.  Metal-free, organocatalytic asymmetric transfer hydrogenation of α,β-unsaturated aldehydes , 2005 .

[31]  S. Servi Baker's Yeast as a Reagent in Organic Synthesis , 1990 .

[32]  K. Shimoda,et al.  Novel reductase participation in the syn-addition of hydrogen to the CC bond of enones in the cultured cells of Nicotiana tabacum , 1996 .

[33]  C. Fuganti Baker's yeast mediated synthesis of natural products , 1990 .

[34]  M. Hesse,et al.  Simple synthesis of (±)-(E)-3-(4-hydroxyphenyl)-N-[4-(3-methyl-2,5-dioxo-1-pyrrolidinyl)butyl]-2-propenamide, a novel phenolic amide derivative from the bulbs of Lilium regale WILSON , 1993 .

[35]  I. Gatfield Biotechnological production of flavour-active lactones , 1997 .

[36]  M. Uskoković,et al.  ASYMMETRIC SYNTHESIS OF LOGANIN, STEREOSPECIFIC FORMATION OF (1R,2R)- AND (1S,2S)-2-METHYL-3-CYCLOPENTEN-1-OL AND (2R)- AND (2S)-2-METHYL-CYCLOPENTANONE , 1973 .

[37]  W. Knowles Asymmetrische Hydrierungen (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[38]  H. Leuenberger,et al.  Synthese von optisch aktiven, natürlichen Carotinoiden und strukturell verwandten Naturprodukten. I. Synthese der chiralen Schlüsselverbindung (4R, 6R)‐4‐Hydroxy‐2,2,6‐trimethylcyclohexanon , 1976 .

[39]  B. List,et al.  Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of ?,?-Unsaturated Aldehydes , 2005 .

[40]  R. Kazlauskas,et al.  Enantiocomplementary Enzymatic Resolution of the Chiral Auxiliary: cis,cis‐6‐(2,2‐Dimethylpropanamido)spiro[4.4]nonan‐1‐ol and the Molecular Basis for the High Enantioselectivity of Subtilisin Carlsberg , 2004, Chembiochem : a European journal of chemical biology.

[41]  K. Hult,et al.  An S-selective lipase was created by rational redesign and the enantioselectivity increased with temperature. , 2005, Angewandte Chemie.

[42]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[43]  K. Hult,et al.  Enzyme promiscuity: mechanism and applications. , 2007, Trends in biotechnology.

[44]  H. Simon,et al.  Reductions of 2-enals, dehydrogenation of saturated aldehydes and their racemisation. , 1988, Biological Chemistry Hoppe-Seyler.

[45]  O. Bortolini,et al.  Enantioselective inclusion in bile acids: resolution of cyclic ketones , 2001 .

[46]  W. Knowles Asymmetric hydrogenations (Nobel lecture). , 2002, Angewandte Chemie.

[47]  Michael Müller,et al.  Enantioselective Synthesis of Both Enantiomers of Various Propargylic Alcohols by Use of Two Oxidoreductases , 2001 .

[48]  J. Stewart,et al.  Stereoselective enone reductions by Saccharomyces carlsbergensis old yellow enzyme , 2006 .

[49]  B. List,et al.  Organocatalytic asymmetric transfer hydrogenation of nitroolefins. , 2007, Journal of the American Chemical Society.

[50]  Christopher M. Clouthier,et al.  Directed evolution as a method to create enantioselective cyclohexanone monooxygenases for catalysis in Baeyer-Villiger reactions. , 2004, Angewandte Chemie.

[51]  M. Kataoka,et al.  Production of a Doubly Chiral Compound, (4R,6R)-4-Hydroxy-2,2,6-Trimethylcyclohexanone, by Two-Step Enzymatic Asymmetric Reduction , 2003, Applied and Environmental Microbiology.

[52]  P. Karplus,et al.  On the Active Site of Old Yellow Enzyme , 1998, The Journal of Biological Chemistry.

[53]  N. Bruce,et al.  'New uses for an Old Enzyme'--the Old Yellow Enzyme family of flavoenzymes. , 2002, Microbiology.