The SEDs and host galaxies of the dustiest GRB afterglows

Context. The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe. Until recently, however, the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows, biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A GRB 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry, and location of the absorbing dust of these poorly-explored host galaxies, and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line and galaxy-integrated characteristics such as the host’s stellar mass, luminosity, color-excess, and star-formation rate. Results. For the eight afterglows considered in this study, we report for the first time the redshift of GRB 081109 (z = 0.9787±0.0005), and the visual extinction towards GRBs 081109 (A GRB = 3.4 +0.4 −0.3 mag) and 100621A (A GRB V = 3.8 ± 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs, there is a strong anti-correlation between the afterglow’s metal-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder (� (R − K)AB �∼ 1.6 mag), more luminous (� L �∼ 0.9L ∗ ), and massive (� log M∗[M� ] �∼ 9.8) than the hosts of optically-bright events. Hence, we probe a different galaxy population, suggesting that previous host samples miss most of the massive and metal-rich members. This also indicates that the dust along the sight-line is often related to host properties, and thus probably located in the diffuse ISM or interstellar clouds and not in the immediate GRB environment. Some of the hosts in our sample, are blue, young, or of low stellar mass illustrating that even apparently non-extinguished galaxies possess very dusty sight-lines owing to a patchy dust distribution. Conclusions. The afterglows and host galaxies of the dustiest GRBs provide evidence of a complex dust geometry in star-forming galaxies. In addition, they establish a population of luminous, massive, and correspondingly chemically evolved GRB hosts. This suggests that GRBs trace the global star-formation rate better than studies based on optically selected host samples indicate, and that the previously claimed deficiency of high-mass hosts was at least partially a selection effect.

[1]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[2]  Imperial College London,et al.  A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR z ∼ 7 LYMAN-BREAK GALAXIES: SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203 , 2010, 1010.1783.

[3]  A. J. Levan,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[4]  S. B. Pandey,et al.  The complex light curve of the afterglow of GRB 071010A , 2008, 0804.4367.

[5]  M. J. Michalowski,et al.  The Nature of GRB-selected Submillimeter Galaxies: Hot and Young , 2007, 0708.3850.

[6]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[7]  Chris Biemesderfer,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[8]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[9]  S. Mereghetti,et al.  Are the hosts of gamma-ray bursts sub-luminous and blue galaxies? , 2003, astro-ph/0301149.

[10]  MPE,et al.  Highly extinguished host galaxy of the dark GRB 020819 , 2010, 1005.1257.

[11]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[12]  Titus J. Galama,et al.  High Column Densities and Low Extinctions of Gamma-Ray Bursts: Evidence for Hypernovae and Dust Destruction , 2000, astro-ph/0009367.

[13]  J. Prochaska,et al.  Constraints on Type Ib/c and GRB Progenitors , 2007, astro-ph/0702338.

[14]  S. Djorgovski,et al.  The Host Galaxy of GRB 970508 , 1998, astro-ph/9807315.

[15]  M. Nardini,et al.  A unifying view of gamma-ray burst afterglows , 2008, 0811.1038.

[16]  Chile,et al.  A log NH I = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401 , 2005, astro-ph/0510368.

[17]  P. Giommi,et al.  GRB 090423 at a redshift of z ≈ 8.1 , 2009, Nature.

[18]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[19]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[20]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[21]  J. Gorosabel,et al.  ON THE DISTRIBUTION OF STELLAR MASSES IN GAMMA-RAY BURST HOST GALAXIES , 2008, 0803.2235.

[22]  F. Mannucci,et al.  A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.

[23]  M. Modjaz,et al.  MODELING THE GRB HOST GALAXY MASS DISTRIBUTION: ARE GRBs UNBIASED TRACERS OF STAR FORMATION? , 2009, 0905.1953.

[24]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[25]  P. M. Vreeswijk,et al.  The very red afterglow of GRB 000418: further evidence for dust extinction in a gamma-ray burst hot galaxy , 2000 .

[26]  S. B. Pandey,et al.  The Swift/Fermi GRB 080928 from 1 eV to 150 keV , 2010, 1007.0383.

[27]  J. Gorosabel,et al.  Swift identification of dark gamma-ray bursts , 2004 .

[28]  Marijn Franx,et al.  The Rest-Frame Optical Luminosity Functions of Galaxies at 2≤z≤3.5 , 2006, astro-ph/0610484.

[29]  The Galaxy Mass Function up to z=4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies ⋆ , 2006, astro-ph/0609068.

[30]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[31]  D. Calzetti,et al.  Dust in Starburst Galaxies , 1997, astro-ph/9705043.

[32]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[33]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[34]  L. A. Antonelli,et al.  The two-component jet of GRB 080413B , 2010, 1012.0328.

[35]  A. U. Postigo,et al.  The X-ray absorbing column densities of Swift gamma-ray bursts , 2009, 0911.1214.

[36]  Ronnie Killough,et al.  The Swift Ultra-Violet/Optical Telescope , 2001 .

[37]  R. Willingale,et al.  Evidence for chromatic X-ray light-curve breaks in Swift GRB afterglows and their theoretical implications , 2006 .

[38]  M. J. Page,et al.  Dust and gas in the local environments of gamma-ray bursts , 2007 .

[39]  T. Ichikawa,et al.  MOIRCS DEEP SURVEY. IV. EVOLUTION OF GALAXY STELLAR MASS FUNCTION BACK TO z ∼ 3 , 2009, 0907.0133.

[40]  I. Hook,et al.  A high abundance of massive galaxies 3–6 billion years after the Big Bang , 2004, Nature.

[41]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[42]  S. Savaglio,et al.  The 2175 Å Dust Feature in a Gamma-Ray Burst Afterglow at Redshift 2.45 , 2008, 0805.2824.

[43]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[44]  Nathaniel R. Butler,et al.  X-Ray Hardness Evolution in GRB Afterglows and Flares: Late-Time GRB Activity without NH Variations , 2007 .

[45]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[46]  D. Bersier,et al.  A faint optical flash in dust-obscured GRB 080603A: implications for GRB prompt emission mechanisms , 2011, 1105.1591.

[47]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[48]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[49]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[50]  Dust Attenuation in Late-Type Galaxies. I. Effects on Bulge and Disk Components , 2004, astro-ph/0409183.

[51]  D. Xu,et al.  The X-ray afterglow of GRB 081109A: clue to the wind bubble structure , 2009, 0903.4476.

[52]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[53]  University College Dublin,et al.  A VERY METAL-POOR DAMPED LYMAN-α SYSTEM REVEALED THROUGH THE MOST ENERGETIC GRB 090926A , 2010, 1004.3261.

[54]  A. S. Fruchter,et al.  On the Lyalpha emission from gamma-ray burst host galaxies: Evidence for low metallicities , 2003, astro-ph/0306403.

[55]  D. Pierini,et al.  Dust properties of UV-bright galaxies at z-2. , 2005, astro-ph/0508549.

[56]  Davide Lazzati,et al.  Time-dependent Photoionization in a Dusty Medium. II. Evolution of Dust Distributions and Optical Opacities , 2002, astro-ph/0211235.

[57]  Uwe Thiele,et al.  The Very Faint K-Band Afterglow of GRB 020819 and the Dust Extinction Hypothesis of the Dark Bursts , 2003 .

[58]  M. C. Begam,et al.  An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.

[59]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[60]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[61]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[62]  James E. Rhoads,et al.  X-Ray Destruction of Dust along the Line of Sight to γ-Ray Bursts , 2001, astro-ph/0106343.

[63]  E. Rol,et al.  GRB 070306: A Highly Extinguished Afterglow , 2008, 0803.4017.

[64]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[65]  Bing Zhang Gamma-Ray Bursts in the Swift Era , 2007, astro-ph/0701520.

[66]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[67]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[68]  S. M. Fall,et al.  Heavy-Element Abundances and Dust Depletions in the Host Galaxies of Three Gamma-Ray Bursts , 2002, astro-ph/0203154.

[69]  P. Schady,et al.  The nature of "dark" gamma-ray bursts , 2010, 1011.0618.

[70]  T. Dwelly,et al.  Dust and metal column densities in gamma-ray burst host galaxies , 2009, 0910.2590.

[71]  Observatoire de Geneve,et al.  THE FIRST POSITIVE DETECTION OF MOLECULAR GAS IN A GRB HOST GALAXY , 2009, 0901.0556.

[72]  Chris L. Fryer,et al.  Constraints on Type Ib/c Supernovae and Gamma‐Ray Burst Progenitors , 2007 .

[73]  N. R. Butler,et al.  Evidence for supernova-synthesized dust from the rising afterglow of GRB 071025 at z∼ 5 , 2009, 0912.2999.

[74]  Yosuke Minowa,et al.  “DARK” GRB 080325 IN A DUSTY MASSIVE GALAXY AT z ∼ 2 , 2010, 1003.3717.

[75]  E. O. Ofek,et al.  DARK BURSTS IN THE SWIFT ERA: THE PALOMAR 60 INCH-SWIFT EARLY OPTICAL AFTERGLOW CATALOG , 2008, 0808.3983.

[76]  D. A. Kann,et al.  LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS , 2009, 0907.3449.

[77]  L. A. Antonelli,et al.  Absorption in Gamma-Ray Burst Afterglows , 2004, astro-ph/0403149.

[78]  S. Savaglio,et al.  THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2008, 0803.2718.

[79]  Sandra Savaglio,et al.  Rapid-response mode VLT/UVES spectroscopy of GRB 060418. Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations , 2006 .

[80]  K. Gordon,et al.  Escape of Stellar Radiation from a Clumpy Scattering Environment , 1996 .

[81]  M. Nardini,et al.  Testing a new view of gamma-ray burst afterglows , 2009, 0907.4157.

[82]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[83]  A. J. Levan,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS , 2007, 0712.2186.

[84]  T. S. Koch,et al.  A statistical comparison of the optical/UV and X-ray afterglows of gamma-ray bursts using the Swift Ultraviolet Optical and X-ray Telescopes , 2010, 1010.6212.

[85]  C. Kouveliotou,et al.  The submillimetre properties of gamma-ray burst host galaxies , 2004 .

[86]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[87]  J. P. U. Fynbo,et al.  DUST EXTINCTION IN HIGH-z GALAXIES WITH GAMMA-RAY BURST AFTERGLOW SPECTROSCOPY: THE 2175 Å FEATURE AT z = 2.45 , 2008, 0810.2897.

[88]  IAA-CSIC,et al.  UV star-formation rates of GRB host galaxies , 2004, astro-ph/0407066.

[89]  Enrico Ramirez-Ruiz,et al.  Extinction of gamma-ray burst afterglows as a diagnostic of the location of cosmic star formation , 2002 .

[90]  Arne Rau,et al.  The host galaxy of GRB 011121: morphology and spectral energy distribution , 2006, astro-ph/0611555.

[91]  C. Guidorzi,et al.  Detection of the optical afterglow of GRB 000630: Implications for dark bursts , 2001, astro-ph/0101425.

[92]  Daniel A. Perley,et al.  ERRATUM: A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036 (2010, ApJ, 723, L218) , 2011 .

[93]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[94]  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[95]  E. Rol,et al.  How Special Are Dark Gamma-Ray Bursts: A Diagnostic Tool , 2005, astro-ph/0501375.

[96]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[97]  B. Draine,et al.  Dust Sublimation by Gamma-ray Bursts and Its Implications , 1999, astro-ph/9909020.

[98]  A. Herrero,et al.  The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars , 2007, 0708.2042.

[99]  S. R. Kulkarni,et al.  The ERO Host Galaxy of GRB 020127: Implications for the Metallicity of GRB Progenitors , 2007 .

[100]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[101]  Thuringer Landessternwarte Tautenburg,et al.  GRB 071028B, a burst behind large amounts of dust in an unabsorbed galaxy , 2011, 1103.6130.

[102]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[103]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[104]  S. M. Fall,et al.  Dust Depletion and Extinction in a Gamma-Ray Burst Afterglow , 2004 .

[105]  E. O. Ofek,et al.  THE HOST GALAXIES OF SWIFT DARK GAMMA-RAY BURSTS: OBSERVATIONAL CONSTRAINTS ON HIGHLY OBSCURED AND VERY HIGH REDSHIFT GRBs , 2009, 0905.0001.

[106]  D. A. Kann,et al.  Signatures of Extragalactic Dust in Pre-Swift GRB Afterglows , 2006 .

[107]  E. Rol,et al.  Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. I. Absorption by Host-Galaxy Gas and Dust , 2007 .

[108]  Fabio Governato,et al.  The nature of H I absorbers in gamma-ray burst afterglows: clues from hydrodynamic simulations , 2009, 0909.1321.

[109]  F. Özel,et al.  The relation between optical extinction and hydrogen column density in the Galaxy , 2009 .

[110]  S. R. Kulkarni,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[111]  A. Yoldas,et al.  CORRELATED OPTICAL AND X-RAY FLARES IN THE AFTERGLOW OF XRF 071031 , 2009, 0903.1184.

[112]  E. Rol,et al.  OPTICAL CLASSIFICATION OF GAMMA-RAY BURSTS IN THE SWIFT ERA , 2009, 0905.0524.

[113]  S. R. Kulkarni,et al.  A Submillimeter and Radio Survey of Gamma-Ray Burst Host Galaxies: A Glimpse into the Future of Star Formation Studies , 2003 .

[114]  Cambridge,et al.  Gamma-ray bursts and the history of star formation , 2000 .

[115]  Jason X. Prochaska,et al.  Dissecting the Circumstellar Environment of γ-Ray Burst Progenitors , 2006, astro-ph/0601057.

[116]  Sandra Savaglio,et al.  The missing gas problem in GRB host galaxies: evidence for a highly ionised component , 2010, 1010.2034.

[117]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[118]  B. Draine,et al.  Gamma-Ray Burst in a Molecular Cloud: Destruction of Dust and H2 and the Emergent Spectrum , 2001, astro-ph/0108243.

[119]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[120]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[121]  T. Sakamoto,et al.  A PHOTOMETRIC REDSHIFT OF z ∼ 9.4 FOR GRB 090429B , 2011, 1105.4915.

[122]  L. Kewley,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 HIGH-RESOLUTION MEASUREMENTS OF THE HALOS OF FOUR DARK MATTER-DOMINATED GALAXIES: DEVIATIONS FROM A UNIVERSAL DENSITY PROFILE 1 , 2004 .

[123]  Peter Garnavich,et al.  Infrared and Optical Observations of GRB 030115 and its Extremely Red Host Galaxy: Implications for Dark Bursts , 2006, astro-ph/0608166.

[124]  J. X. Prochaska,et al.  A HIGH SIGNAL-TO-NOISE RATIO COMPOSITE SPECTRUM OF GAMMA-RAY BURST AFTERGLOWS , 2010, 1011.0734.

[125]  Chris L. Fryer,et al.  To be submitted to The Astrophysical Journal Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts , 1999 .

[126]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[127]  D. A. Kann,et al.  On the nature of the extremely fast optical rebrightening of the afterglow of GRB 081029 , 2011, 1105.0917.

[128]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[129]  J. Brinchmann,et al.  The VIMOS VLT Deep Survey. The assembly history of the stellar mass in galaxies: from the young to t , 2007, 0704.1600.

[130]  R. S. Priddey,et al.  The extreme, red afterglow of GRB 060923A: distance or dust? , 2008, 0803.4100.

[131]  Re'em Sari,et al.  The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows , 2001 .

[132]  L. A. Antonelli,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. II. TYPE I GRB VERSUS TYPE II GRB OPTICAL AFTERGLOWS , 2008, 0804.1959.

[133]  A. J. Levan,et al.  GRB 080913 AT REDSHIFT 6.7 , 2008, 0810.2314.

[134]  Andrew S. Fruchter,et al.  A HIGH-METALLICITY HOST ENVIRONMENT FOR THE LONG-DURATION GRB 020819 , 2010, 1001.0970.

[135]  T. S. Koch,et al.  Photometric redshifts for gamma-ray burst afterglows from GROND and Swift/UVOT , 2010, 1011.1205.

[136]  F. Mannucci,et al.  The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies , 2010, 1011.4506.

[137]  Johan P. U. Fynbo,et al.  The extinction curves of star-forming regions from z = 0.1 to 6.7 using GRB afterglow spectroscopy , 2011, 1102.1469.

[138]  Evert Rol,et al.  A γ-ray burst at a redshift of z ≈ 8.2 , 2009, Nature.

[139]  M. Honsberg,et al.  GROND—a 7-Channel Imager , 2008, 0801.4801.

[140]  Norbert Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005 .