Thermal expanding behavior of carbon nanotube-reinforced metal matrix nanocomposites-A micromechanical modeling

[1]  R. Ansari,et al.  Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis , 2019 .

[2]  M. Hassanzadeh-Aghdam,et al.  The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites , 2018 .

[3]  R. Ansari,et al.  Micromechanical estimation of biaxial thermomechanical responses of hybrid fiber-reinforced metal matrix nanocomposites containing carbon nanotubes , 2018 .

[4]  R. Ansari,et al.  Micromechanics-based characterization of mechanical properties of fuzzy fiber-reinforced composites containing carbon nanotubes , 2018 .

[5]  R. Ansari,et al.  Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates , 2018 .

[6]  R. Ansari,et al.  Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates , 2017 .

[7]  N. Selvakumar,et al.  Microstructure and mechanical characterization of (B4C+ h-BN)/Al hybrid nanocomposites processed by ultrasound assisted casting , 2017, International Journal of Mechanical Sciences.

[8]  R. Ansari,et al.  Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams , 2017 .

[9]  A. Esawi,et al.  Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites , 2017 .

[10]  M. Hassanzadeh-Aghdam,et al.  A comprehensive analysis of mechanical characteristics of carbon nanotube-metal matrix nanocomposites , 2017 .

[11]  R. Ansari,et al.  A Micromechanical Model for Effective Thermo-elastic Properties of Nanocomposites with Graded Properties of Interphase , 2017 .

[12]  B. Xiao,et al.  Hot deformation and activation energy of a CNT-reinforced aluminum matrix nanocomposite , 2017 .

[13]  R. Ansari,et al.  Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles , 2017 .

[14]  Di Zhang,et al.  Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling , 2017 .

[15]  F. Tornabene,et al.  Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes , 2017 .

[16]  Hui‐Shen Shen,et al.  Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites – A molecular dynamics simulation , 2017 .

[17]  D. Bae,et al.  Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures , 2016 .

[18]  R. Ansari,et al.  Nonlinear primary resonance of third-order shear deformable functionally graded nanocomposite rectangular plates reinforced by carbon nanotubes , 2016 .

[19]  R. Ansari,et al.  On elastic modulus and biaxial initial yield surface of carbon nanotube-reinforced aluminum nanocomposites , 2016 .

[20]  R. Ansari,et al.  Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites , 2016 .

[21]  Reza Ansari,et al.  Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers , 2016 .

[22]  L. Bian,et al.  A new micromechanics model and effective elastic modulus of nanotube reinforced composites , 2016 .

[23]  V. Sharma,et al.  Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite , 2016, International Journal of Minerals, Metallurgy, and Materials.

[24]  T. Hashida,et al.  Negative axial thermal expansion coefficient of carbon nanotubes: Experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites , 2015 .

[25]  A. Addad,et al.  Interfacial characterization in carbon nanotube reinforced aluminum matrix composites , 2015 .

[26]  D. Keum,et al.  Strengthening mechanisms in carbon nanotube-reinforced aluminum composites , 2015 .

[27]  I. Figueroa,et al.  FEA evaluation of the Al4C3 formation effect on the Young’s modulus of carbon nanotube reinforced aluminum matrix composites , 2015 .

[28]  S. Meguid,et al.  Multiscale modeling of carbon nanotube epoxy composites , 2015 .

[29]  K. M. Liew,et al.  On the study of elastic properties of CNT-reinforced composites based on element-free MLS method with nanoscale cylindrical representative volume element , 2015 .

[30]  Y. Zare Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly–Tyson theory , 2015 .

[31]  Reza Ansari,et al.  Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy , 2015 .

[32]  C. Shi,et al.  Synergistic effect of CNTs reinforcement and precipitation hardening in in-situ CNTs/Al–Cu composites , 2015 .

[33]  M. Ray,et al.  Micromechanics of piezoelectric fuzzy fiber-reinforced composite , 2015 .

[34]  W. Wang,et al.  Effect of Carbon Nanotube Orientation on Mechanical Properties and Thermal Expansion Coefficient of Carbon Nanotube-Reinforced Aluminum Matrix Composites , 2014, Acta Metallurgica Sinica (English Letters).

[35]  Weiqi Wang,et al.  Tensile Strength and Electrical Conductivity of Carbon Nanotube Reinforced Aluminum Matrix Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing , 2014 .

[36]  S. Upadhyay,et al.  Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite , 2014 .

[37]  M. Leparoux,et al.  Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites , 2014 .

[38]  Liying Jiang,et al.  Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites , 2013 .

[39]  A. Hamouda,et al.  Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites , 2013 .

[40]  J. Ju,et al.  Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites , 2013 .

[41]  Bethany Fralick Three-dimensional evolution of mechanical percolation in nanocomposites with random microstructures , 2012 .

[42]  Satish C. Sharma,et al.  Effect of carbon nanotube orientation on the mechanical properties of nanocomposites , 2012 .

[43]  N. Nouri,et al.  Fabrication and mechanical property prediction of carbon nanotube reinforced Aluminum nanocomposites , 2012 .

[44]  M. Mahmoodi,et al.  Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading—A micromechanical approach , 2011 .

[45]  S. Baxter,et al.  Pseudo-percolation: Critical volume fractions and mechanical percolation in polymer nanocomposites , 2011 .

[46]  P. Koppad,et al.  Elastic modulus of multiwalled carbon nanotubes reinforced aluminium matrix nanocomposite – A theoretical approach , 2011 .

[47]  Pallab Barai,et al.  A theory of plasticity for carbon nanotube reinforced composites , 2011 .

[48]  S. R. Bakshi,et al.  An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites , 2011 .

[49]  A. Tcharkhtchi,et al.  Mechanical properties of multi-walled carbon nanotube/epoxy composites , 2010 .

[50]  D. Qian,et al.  Elastic response of a carbon nanotube fiber reinforced polymeric composite: A numerical and experimental study , 2010 .

[51]  M. Miki-Yoshida,et al.  Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion , 2010 .

[52]  M. Shakeri,et al.  Micromechanical modeling of interface damage of metal matrix composites subjected to off-axis loading , 2010 .

[53]  S. R. Bakshi,et al.  Carbon nanotube reinforced metal matrix composites - a review , 2010 .

[54]  N. Koratkar,et al.  Enhanced mechanical properties of nanocomposites at low graphene content. , 2009, ACS nano.

[55]  C. Shi,et al.  Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition , 2009 .

[56]  S. R. Bakshi,et al.  Interface in carbon nanotube reinforced aluminum silicon composites: Thermodynamic analysis and experimental verification , 2009 .

[57]  T. Miyazaki,et al.  Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites , 2009 .

[58]  M. Miki-Yoshida,et al.  Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling , 2009 .

[59]  Yusong He,et al.  Tensile deformation and fracture behavior of spray-deposition 7075/15SiCp aluminum matrix composite sheet at elevated temperatures , 2008 .

[60]  Peng Zhang,et al.  Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes , 2008 .

[61]  A. Esawi,et al.  Carbon nanotube-reinforced aluminium strips , 2008 .

[62]  L. Ci,et al.  Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum , 2006 .

[63]  Jacqueline J. Li,et al.  Transversely isotropic elastic properties of single-walled carbon nanotubes , 2004 .

[64]  K. Chan,et al.  High-strain-rate superplasticity of particulate reinforced aluminium matrix composites , 1998 .

[65]  R. Christensen,et al.  Coefficient of Thermal Expansion for Composites with Randomly Oriented Fibers , 1981 .

[66]  Y. Chiu,et al.  Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation , 2010 .

[67]  Priit Kulu,et al.  In situ tensile testing in SEM of Al-Al 4C3 nanomaterials , 2009 .

[68]  Hui‐Ming Cheng,et al.  Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum , 2004 .