Sampling methods to estimate the Banzhaf–Owen value

[1]  M. Dall’Aglio,et al.  Sometimes the Computation of the Shapley Value Is Simple , 2019, Handbook of the Shapley Value.

[2]  Vito Fragnelli,et al.  Handbook of the Shapley Value , 2019 .

[3]  Justo Puerto,et al.  A stochastic approach to approximate values in cooperative games , 2019, Eur. J. Oper. Res..

[4]  M. Gloria Fiestras-Janeiro,et al.  Estimation of the Owen Value Based on Sampling , 2018 .

[5]  Daniel Gómez,et al.  Improving polynomial estimation of the Shapley value by stratified random sampling with optimum allocation , 2017, Comput. Oper. Res..

[6]  S. Lorenzo-Freire New characterizations of the Owen and Banzhaf–Owen values using the intracoalitional balanced contributions property , 2017 .

[7]  Sasan Maleki,et al.  Addressing the computational issues of the Shapley value with applications in the smart grid , 2015 .

[8]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[9]  Roberto Lucchetti,et al.  The Shapley and Banzhaf values in microarray games , 2010, Comput. Oper. Res..

[10]  Jesús Mario Bilbao,et al.  Weighted multiple majority games with unions: Generating functions and applications to the European Union , 2009, Eur. J. Oper. Res..

[11]  Daniel Gómez,et al.  Polynomial calculation of the Shapley value based on sampling , 2009, Comput. Oper. Res..

[12]  Francesc Carreras,et al.  A comparative axiomatic characterization of the Banzhaf-Owen coalitional value , 2007, Decis. Support Syst..

[13]  Jesús Mario Bilbao,et al.  The distribution of power in the European Constitution , 2007, Eur. J. Oper. Res..

[14]  José María Alonso-Meijide,et al.  Generating Functions for Coalitional Power Indices: An Application to the IMF , 2005, Ann. Oper. Res..

[15]  A. Laruelle,et al.  On The Meaning Of Owen–Banzhaf Coalitional Value In Voting Situations , 2004 .

[16]  Jesús Mario Bilbao,et al.  Computing power indices in weighted multiple majority games , 2003, Math. Soc. Sci..

[17]  Dennis Leech,et al.  Computing Power Indices for Large Voting Games , 2003, Manag. Sci..

[18]  Rafael Amer,et al.  The modified Banzhaf value for games with coalition structure: an axiomatic characterization , 2002, Math. Soc. Sci..

[19]  Dennis Leech,et al.  Voting Power in the Governance of the International Monetary Fund , 2002, Ann. Oper. Res..

[20]  A. Winsor Sampling techniques. , 2000, Nursing times.

[21]  Vito Fragnelli,et al.  How to Share Railways Infrastructure Costs , 2000 .

[22]  Ignacio García-Jurado,et al.  Owen's Coalitional Value and Aircraft Landing Fees , 1997 .

[23]  Xiaotie Deng,et al.  On the Complexity of Cooperative Solution Concepts , 1994, Math. Oper. Res..

[24]  N. Fisher,et al.  Probability Inequalities for Sums of Bounded Random Variables , 1994 .

[25]  L. Shapley A Value for n-person Games , 1988 .

[26]  G. Owen Modification of the Banzhaf-Coleman Index for Games with a Priori Unions , 1981 .

[27]  G. Owen VALUES OF GAMES WITH A PRIORI UNIONS , 1977 .

[28]  G. Owen Multilinear extensions and the banzhaf value , 1975 .

[29]  R. Serfling Probability Inequalities for the Sum in Sampling without Replacement , 1974 .

[30]  G. Owen,et al.  A Simple Expression for the Shapley Value in a Special Case , 1973 .

[31]  G. Owen Multilinear Extensions of Games , 1972 .