Ultralow thermal conductivity and improved ZT of CuInTe2 by high-entropy structure design

[1]  S. Pennycook,et al.  High-entropy-stabilized chalcogenides with high thermoelectric performance , 2021, Science.

[2]  Jun Jiang,et al.  Enhanced Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3/Sb2Te3 Composite. , 2020, ACS applied materials & interfaces.

[3]  Xiaoyuan Zhou,et al.  Manipulating the phase transformation temperature to achieve cubic Cu5FeS4−xSex and enhanced thermoelectric performance , 2020 .

[4]  Xiaoyuan Zhou,et al.  Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying , 2020 .

[5]  Jiecai Fu,et al.  High thermoelectric properties realized in earth-abundant Bi2S3 bulk via carrier modulation and multi-nano-precipitates synergy , 2020, Nano Energy.

[6]  M. Kanatzidis,et al.  High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe3 by High Entropy Engineering. , 2020, Journal of the American Chemical Society.

[7]  F. Fauth,et al.  Unveiling the Correlation between the Crystalline Structure of M‐Filled CoSb3 (M = Y, K, Sr) Skutterudites and Their Thermoelectric Transport Properties , 2020, Advanced Functional Materials.

[8]  T. Kanno,et al.  Large valley degeneracy and high thermoelectric performance in p-type Ba8Cu6Ge40-based clathrates , 2020 .

[9]  Jun Jiang,et al.  Phonon Engineering for Thermoelectric Enhancement of p-Type Bismuth Telluride by Hot Pressing Texture Method. , 2020, ACS applied materials & interfaces.

[10]  S. Kumaran,et al.  High entropy phenomena induced low thermal conductivity in BiSbTe1.5Se1.5 thermoelectric alloy through mechanical alloying and spark plasma sintering , 2020, Materials Letters.

[11]  M. Kanatzidis,et al.  Ultralow Thermal Conductivity and Thermoelectric Properties of Rb2Bi8Se13 , 2020, Chemistry of Materials.

[12]  Jiong Yang,et al.  Suppressing the dynamic precipitation and lowering the thermal conductivity for stable and high thermoelectric performance in BaCu2Te2 based materials , 2020 .

[13]  Ni Ma,et al.  α-CsCu5Se3:Discovery of A Low-cost Bulk Selenide with High Thermoelectric Performance. , 2020, Journal of the American Chemical Society.

[14]  G. Cai,et al.  Synergistic Regulation of Phonon and Electronic Properties to Improve the Thermoelectric Performance of Chalcogenide CuIn1−xGaxTe2:yInTe (x = 0–0.3) with In Situ Formed Nanoscale Phase InTe , 2020, Advanced Electronic Materials.

[15]  M. Kanatzidis,et al.  High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6 , 2020, Joule.

[16]  S. Fan,et al.  Generating Light from Darkness , 2019, Joule.

[17]  Di Li,et al.  Design of Domain Structure and Realization of Ultralow Thermal Conductivity for Record‐High Thermoelectric Performance in Chalcopyrite , 2019, Advanced materials.

[18]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[19]  Jun Jiang,et al.  Ultralow Lattice Thermal Conductivity in SnTe by Manipulating the Electron–Phonon Coupling , 2019, The Journal of Physical Chemistry C.

[20]  Lidong Chen,et al.  Thermoelectric properties of n-type Cu4Sn7S16-based compounds , 2019, RSC advances.

[21]  Jun Jiang,et al.  Designing band engineering for thermoelectrics starting from the periodic table of elements , 2018, Materials Today Physics.

[22]  Yong Zhang,et al.  High-entropy functional materials , 2018, Journal of Materials Research.

[23]  Haijun Wu,et al.  Entropy Engineering of SnTe: Multi‐Principal‐Element Alloying Leading to Ultralow Lattice Thermal Conductivity and State‐of‐the‐Art Thermoelectric Performance , 2018, Advanced Energy Materials.

[24]  Y. Ikeda,et al.  Phonon broadening in high entropy alloys , 2017, npj Computational Materials.

[25]  C. Uher,et al.  Entropy as a Gene‐Like Performance Indicator Promoting Thermoelectric Materials , 2017, Advanced materials.

[26]  Junyou Yang,et al.  Combination of Carrier Concentration Regulation and High Band Degeneracy for Enhanced Thermoelectric Performance of Cu3SbSe4. , 2017, ACS applied materials & interfaces.

[27]  Yuan Wu,et al.  Thermoelectric performance of PbSnTeSe high-entropy alloys , 2017 .

[28]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[29]  Lidong Chen,et al.  Cu-based thermoelectric materials , 2016 .

[30]  N. Jones,et al.  High-entropy alloys: a critical assessment of their founding principles and future prospects , 2016 .

[31]  Marco Buongiorno Nardelli,et al.  Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. , 2015, Nature materials.

[32]  P. Erhart,et al.  High-entropy alloys as high-temperature thermoelectric materials , 2015 .

[33]  G. J. Snyder,et al.  Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites , 2015, Nature Communications.

[34]  Jihui Yang,et al.  High‐Performance Pseudocubic Thermoelectric Materials from Non‐cubic Chalcopyrite Compounds , 2014, Advanced materials.

[35]  M. Kanatzidis,et al.  High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials. , 2014, Journal of the American Chemical Society.

[36]  David J. Singh,et al.  Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3(X=Se,S) from first principles , 2012 .

[37]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[38]  Atsuko Kosuga,et al.  Chalcopyrite CuGaTe2: A High‐Efficiency Bulk Thermoelectric Material , 2012, Advanced materials.

[39]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[40]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[41]  E. Toberer,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[42]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .