Quantitative Test of the Evolution of Geant4 Electron Backscattering Simulation

Evolutions of Geant4 code have affected the simulation of electron backscattering with respect to previously published results. Their effects are quantified by analyzing the compatibility of the simulated electron backscattering fraction with a large collection of experimental data for a wide set of physics configuration options available in Geant4. Special emphasis is placed on two electron scattering implementations first released in Geant4 version 10.2: the Goudsmit-Saunderson multiple scattering model and a single Coulomb scattering model based on Mott cross section calculation. The new Goudsmit-Saunderson multiple scattering model appears to perform equally or less accurately than the model implemented in previous Geant4 versions, depending on the electron energy. The new Coulomb scattering model was flawed from a physics point of view, but computationally fast in Geant4 version 10.2; the physics correction released in Geant4 version 10.2p01 severely degrades its computational performance. Problems observed in electron backscattering simulation in previous publications have been addressed by evolutions in the Geant4 geometry domain.

[1]  H. Massey,et al.  Polarisation of Electrons by Double Scattering , 1940, Nature.

[2]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[3]  H. Cramér On the composition of elementary errors: Second paper: Statistical applications , 1928 .

[4]  A. Agresti [A Survey of Exact Inference for Contingency Tables]: Rejoinder , 1992 .

[5]  S. Pensotti,et al.  An expression for the Mott cross section of electrons and positrons on nuclei with Z up t0 118 , 2013, 1304.5871.

[6]  S. T. Perkins,et al.  Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1--100 , 1991 .

[7]  A. Martin-Löf On the composition of elementary errors , 1994 .

[8]  B. Mascialino,et al.  New Developments of the Goodness-of-Fit Statistical Toolkit , 2006, IEEE Transactions on Nuclear Science.

[9]  Richard Von Mises,et al.  Wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik und theoretischen Physik , 1931 .

[10]  Timothy G. Trucano,et al.  Predictive Capability Maturity Model for computational modeling and simulation. , 2007 .

[11]  R. Fisher On the Interpretation of χ2 from Contingency Tables, and the Calculation of P , 2018, Journal of the Royal Statistical Society Series A (Statistics in Society).

[12]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[13]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[14]  Samy Suissa,et al.  Exact unconditional sample sizes for the 2×2 binomial trial , 1985 .

[15]  Maria Grazia Pia,et al.  GEANT4 low energy electromagnetic models for electrons and photons , 1999 .

[16]  R. D. Boschloo Raised conditional level of significance for the 2 × 2‐table when testing the equality of two probabilities , 1970 .

[17]  I. Kawrakow,et al.  The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport , 2016 .

[18]  J. Schwinger,et al.  On the Polarization of Electrons by Double Scattering , 1935 .

[19]  L. Urbán,et al.  A model for multiple scattering in GEANT4 , 2006 .

[20]  Marc Paterno,et al.  Calculating efficiencies and their uncertainties , 2004 .

[21]  P. Rodrigues,et al.  Geant4 low energy electromagnetic physics , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[22]  G. S. Watson,et al.  Goodness-of-fit tests on a circle. II , 1961 .

[23]  N. Mott The Scattering of Fast Electrons by Atomic Nuclei , 1929 .

[24]  Min Cheol Han,et al.  Validation Test of Geant4 Simulation of Electron Backscattering , 2015, IEEE Transactions on Nuclear Science.

[25]  A. G. Frodesen,et al.  Probability and statistics in particle physics , 1979 .

[26]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[27]  Juan Miguel Tapia García,et al.  Comparing the asymptotic power of exact tests in 2×2 tables , 2004, Comput. Stat. Data Anal..

[28]  M. Pia,et al.  A goodness-of-fit statistical toolkit , 2004, IEEE Transactions on Nuclear Science.

[29]  R. Fisher On the Interpretation of χ2 from Contingency Tables, and the Calculation of P , 2010 .

[30]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[31]  Maria Grazia Pia,et al.  First statistical analysis of Geant4 quality software metrics , 2015 .

[32]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[33]  A. Martín Andrés,et al.  Choosing the optimal unconditioned test for comparing two independent proportions , 1994 .

[34]  Min Cheol Han,et al.  Investigation of Geant4 Simulation of Electron Backscattering , 2015, IEEE Transactions on Nuclear Science.

[35]  K. Pearson On the χ 2 Test of Goodness of Fit , 1922 .

[36]  J. L. Saunderson,et al.  Multiple Scattering of Electrons , 1940 .

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  G. Barnard Significance tests for 2 X 2 tables. , 1947, Biometrika.