Inverse Electron-Demand Diels–Alder Bioorthogonal Reactions

Bioorthogonal reactions have been widely used over the last 10 years for imaging, detection, diagnostics, drug delivery, and biomaterials. Tetrazine reactions are a recently developed class of inverse electron-demand Diels–Alder reactions used in bioorthogonal applications. Given their rapid tunable reaction rate and highly fluorogenic properties, tetrazine bioorthogonal reactions have come to be considered highly attractive tools for elucidating biological functions and messages in vitro and in vivo. In this chapter, we present recent advances expanding the scope of precursor reactivity and we introduce new biomedical methodology based on bioorthogonal tetrazine chemistry. We specifically highlight novel applications for different kinds of biomolecules, including nucleic acid, protein, antibodies, lipids, glycans, and bioactive small molecules, in the areas of imaging, detection, and diagnostics. We also briefly present other recently developed inverse electron-demand Diels–Alder bioorthogonal reactions. Lastly, we consider future directions and potential roles that inverse electron-demand Diels–Alder reactions may play in the fields of bioorthogonal and biomedical chemistry.

[1]  H. Hang,et al.  Exploring protein lipidation with chemical biology. , 2011, Chemical reviews.

[2]  P. Friedl,et al.  Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells , 2010, Angewandte Chemie.

[3]  R. Weissleder,et al.  Bioorthogonal probes for polo-like kinase 1 imaging and quantification. , 2011, Angewandte Chemie.

[4]  Xiaoguang Lei,et al.  A bioorthogonal ligation enabled by click cycloaddition of o-quinolinone quinone methide and vinyl thioether. , 2013, Journal of the American Chemical Society.

[5]  Greg M. Thurber,et al.  Reactive polymer enables efficient in vivo bioorthogonal chemistry , 2012, Proceedings of the National Academy of Sciences.

[6]  S. Yao,et al.  "Minimalist" cyclopropene-containing photo-cross-linkers suitable for live-cell imaging and affinity-based protein labeling. , 2014, Journal of the American Chemical Society.

[7]  T. Brown,et al.  Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry. , 2007, Journal of the American Chemical Society.

[8]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[9]  C. Bertozzi,et al.  Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes , 2007, Nature Biotechnology.

[10]  N. Johnsson,et al.  Specific labeling of cell surface proteins with chemically diverse compounds. , 2004, Journal of the American Chemical Society.

[11]  Qing Lin,et al.  Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. , 2012, Angewandte Chemie.

[12]  Carsten Schultz,et al.  Amino acids for Diels-Alder reactions in living cells. , 2012, Angewandte Chemie.

[13]  Chaoran Jing,et al.  Chemical tags for labeling proteins inside living cells. , 2011, Accounts of chemical research.

[14]  A. Jäschke,et al.  Post-synthetic modification of DNA by inverse-electron-demand Diels-Alder reaction. , 2010, Journal of the American Chemical Society.

[15]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[16]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[17]  C. Kuntner,et al.  Development of a (18) F-labeled tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging. , 2014, Angewandte Chemie.

[18]  Carlo P Ramil,et al.  Bioorthogonal chemistry: strategies and recent developments. , 2013, Chemical communications.

[19]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[20]  R. Weissleder,et al.  High‐Yielding, Two‐Step 18F Labeling Strategy for 18F‐PARP1 Inhibitors , 2011, ChemMedChem.

[21]  S. Sze,et al.  Multiplex Imaging and Cellular Target Identification of Kinase Inhibitors via an Affinity-Based Proteome Profiling Approach , 2015, Scientific Reports.

[22]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[23]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[24]  R. Weissleder,et al.  Biomedical applications of tetrazine cycloadditions. , 2011, Accounts of chemical research.

[25]  R. Rossin,et al.  Highly reactive trans-cyclooctene tags with improved stability for Diels-Alder chemistry in living systems. , 2013, Bioconjugate chemistry.

[26]  A. Jäschke,et al.  Inverse electron-demand Diels-Alder reactions for the selective and efficient labeling of RNA. , 2011, Chemical communications.

[27]  Haoxing Wu,et al.  Bioorthogonal Tetrazine-Mediated Transfer Reactions Facilitate Reaction Turnover in Nucleic Acid-Templated Detection of MicroRNA , 2014, Journal of the American Chemical Society.

[28]  H. Janssen,et al.  Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. , 2013, Angewandte Chemie.

[29]  J. Fox,et al.  trans-Cyclooctene--a stable, voracious dienophile for bioorthogonal labeling. , 2013, Current opinion in chemical biology.

[30]  C. Bertozzi,et al.  A "traceless" Staudinger ligation for the chemoselective synthesis of amide bonds. , 2000, Organic letters.

[31]  D. Sabatini,et al.  The production of post-Golgi vesicles requires a protein kinase C-like molecule, but not its phosphorylating activity , 1996, The Journal of cell biology.

[32]  Carolyn R Bertozzi,et al.  Cu-free click cycloaddition reactions in chemical biology. , 2010, Chemical Society reviews.

[33]  R. Wombacher,et al.  Rigid tetrazine fluorophore conjugates with fluorogenic properties in the inverse electron demand Diels-Alder reaction. , 2014, Organic & biomolecular chemistry.

[34]  Carolyn R Bertozzi,et al.  Bringing chemistry to life , 2011, Nature Methods.

[35]  Carolyn R. Bertozzi,et al.  Chemical Technologies for Probing Glycans , 2006, Cell.

[36]  Michael T. Taylor,et al.  Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. , 2011, Journal of the American Chemical Society.

[37]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[38]  Yunyang Wei,et al.  Novel synthesis of 3,6-disubstituted-1,2,4,5-tetrazine derivatives from hydrazones by using [hydroxyl(tosyloxy)iodo]benzene , 2013 .

[39]  Jennifer A. Prescher,et al.  Imaging cell surface glycans with bioorthogonal chemical reporters. , 2007, Journal of the American Chemical Society.

[40]  S. Shuto,et al.  Very rapid DNA-templated reaction for efficient signal amplification and its steady-state kinetic analysis of the turnover cycle. , 2013, Journal of the American Chemical Society.

[41]  R. Weissleder,et al.  Bioorthogonal reaction pairs enable simultaneous, selective, multi-target imaging. , 2012, Angewandte Chemie.

[42]  Stephen C Alley,et al.  Antibody-drug conjugates: targeted drug delivery for cancer. , 2010, Current opinion in chemical biology.

[43]  P G Schultz,et al.  A general method for site-specific incorporation of unnatural amino acids into proteins. , 1989, Science.

[44]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[45]  C. Bertozzi,et al.  Glycans in cancer and inflammation — potential for therapeutics and diagnostics , 2005, Nature Reviews Drug Discovery.

[46]  Hakho Lee,et al.  Probing intracellular biomarkers and mediators of cell activation using nanosensors and bioorthogonal chemistry. , 2011, ACS nano.

[47]  N. Devaraj,et al.  Fluorescent Live‐Cell Imaging of Metabolically Incorporated Unnatural Cyclopropene‐Mannosamine Derivatives , 2013, Chembiochem : a European journal of chemical biology.

[48]  R. Weissleder,et al.  Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition. , 2010, Journal of the American Chemical Society.

[49]  J. Chin,et al.  Concerted, Rapid, Quantitative, and Site-Specific Dual Labeling of Proteins , 2014, Journal of the American Chemical Society.

[50]  N. Devaraj,et al.  Rapid oligonucleotide-templated fluorogenic tetrazine ligations , 2013, Nucleic acids research.

[51]  Binghe Wang,et al.  A general and efficient entry to asymmetric tetrazines for click chemistry applications , 2013 .

[52]  F. Foster,et al.  Catching bubbles: targeting ultrasound microbubbles using bioorthogonal inverse-electron-demand Diels-Alder reactions. , 2014, Angewandte Chemie.

[53]  M. Wuest,et al.  Synthesis and evaluation of an 18F-labelled norbornene derivative for copper-free click chemistry reactions. , 2013, Organic & biomolecular chemistry.

[54]  Ulrike Rieder,et al.  Alkene-tetrazine ligation for imaging cellular DNA. , 2014, Angewandte Chemie.

[55]  N. Devaraj,et al.  68Ga chelating bioorthogonal tetrazine polymers for the multistep labeling of cancer biomarkers. , 2014, Chemical communications.

[56]  J. V. Hest,et al.  Bioorthogonal chemistry in living organisms , 2014 .

[57]  Mark R. Karver,et al.  Metal-catalyzed one-pot synthesis of tetrazines directly from aliphatic nitriles and hydrazine. , 2012, Angewandte Chemie.

[58]  Jennifer A. Prescher,et al.  A comparative study of bioorthogonal reactions with azides. , 2006, ACS chemical biology.

[59]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Steven E. Wheeler,et al.  Two Rapid Catalyst-Free Click Reactions for In Vivo Protein Labeling of Genetically Encoded Strained Alkene/Alkyne Functionalities , 2014, Bioconjugate chemistry.

[61]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[62]  J. Chin,et al.  Genetic Code Expansion Enables Live-Cell and Super-Resolution Imaging of Site-Specifically Labeled Cellular Proteins , 2015, Journal of the American Chemical Society.

[63]  D. Filippov,et al.  Acylazetine as a dienophile in bioorthogonal inverse electron-demand Diels-Alder ligation. , 2014, Organic letters.

[64]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[65]  Carolyn R. Bertozzi,et al.  Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry , 2008, Journal of the American Chemical Society.

[66]  Jennifer A. Prescher,et al.  Functionalized cyclopropenes as bioorthogonal chemical reporters. , 2012, Journal of the American Chemical Society.

[67]  R. Weissleder,et al.  BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes. , 2013, Angewandte Chemie.

[68]  Michael T. Taylor,et al.  Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. , 2012, Journal of the American Chemical Society.

[69]  Stephen Wallace,et al.  Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET , 2014, Nature Chemistry.

[70]  M. Wolfert,et al.  Protein Modification by Strain-Promoted Alkyne–Nitrone Cycloaddition , 2010, Angewandte Chemie.

[71]  C. Slugovc,et al.  Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. , 2013, Chemical Society reviews.

[72]  N. Devaraj,et al.  Expanding room for tetrazine ligations in the in vivo chemistry toolbox. , 2013, Current Opinion in Chemical Biology.

[73]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[74]  R. Jain,et al.  Quantum dot/antibody conjugates for in vivo cytometric imaging in mice , 2015, Proceedings of the National Academy of Sciences.

[75]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[76]  R. Rossin,et al.  SYNFORM ISSUE 2010/9 , 2010, Angewandte Chemie.

[77]  C. Bertozzi,et al.  From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions , 2011, Accounts of chemical research.

[78]  J. V. van Hest,et al.  Bioorthogonal labelling of biomolecules: new functional handles and ligation methods. , 2013, Organic & biomolecular chemistry.

[79]  R. Weissleder,et al.  Bioorthogonal imaging of aurora kinase A in live cells. , 2012, Angewandte Chemie.

[80]  J. Judkins,et al.  Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging , 2015, Journal of the American Chemical Society.

[81]  O. Seitz,et al.  Consecutive signal amplification for DNA detection based on de novo fluorophore synthesis and host-guest chemistry. , 2012, Angewandte Chemie.

[82]  She Chen,et al.  Second Generation TQ-Ligation for Cell Organelle Imaging. , 2015, ACS chemical biology.

[83]  Ralph Weissleder,et al.  Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. , 2009, Angewandte Chemie.

[84]  R. Weissleder,et al.  Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. , 2011, Bioconjugate chemistry.

[85]  R. Weissleder,et al.  Bioorthogonal turn-on probes for imaging small molecules inside living cells. , 2010, Angewandte Chemie.

[86]  S. Tsuneda,et al.  Fluorescence detection of intron lariat RNA with reduction-triggered fluorescent probes. , 2011, Angewandte Chemie.

[87]  N. Winssinger,et al.  Reactions templated by nucleic acids: more ways to translate oligonucleotide-based instructions into emerging function. , 2013, Angewandte Chemie.

[88]  S. Kath‐Schorr,et al.  Diels-Alder cycloadditions on synthetic RNA in mammalian cells. , 2014, Bioconjugate chemistry.

[89]  Jennifer A. Prescher,et al.  Isomeric cyclopropenes exhibit unique bioorthogonal reactivities. , 2013, Journal of the American Chemical Society.

[90]  Amos B. Smith,et al.  Peptide/Protein Stapling and Unstapling: Introduction of s-Tetrazine, Photochemical Release, and Regeneration of the Peptide/Protein , 2015, Journal of the American Chemical Society.

[91]  N. Devaraj,et al.  Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. , 2012, Angewandte Chemie.

[92]  D. Hamelberg,et al.  Clicking 1,2,4,5-tetrazine and cyclooctynes with tunable reaction rates. , 2012, Chemical communications.

[93]  C. Bertozzi,et al.  Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacyclooctynones , 2010, Journal of the American Chemical Society.

[94]  G. Clavier,et al.  s-Tetrazines as building blocks for new functional molecules and molecular materials. , 2010, Chemical reviews.

[95]  K. A. Hofmann,et al.  Einwirkung von Hydrazin auf Dicyandiamid , 1912 .

[96]  Reyna K. V. Lim,et al.  Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. , 2011, Accounts of chemical research.

[97]  M. Kaliszczak,et al.  A bioorthogonal (68)Ga-labelling strategy for rapid in vivo imaging. , 2014, Chemical communications.

[98]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[99]  O. Seitz,et al.  Amplification by nucleic acid-templated reactions. , 2014, Organic & biomolecular chemistry.

[100]  C. Bertozzi,et al.  Systemic Fluorescence Imaging of Zebrafish Glycans with Bioorthogonal Chemistry. , 2015, Angewandte Chemie.

[101]  Michael T. Taylor,et al.  Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. , 2012, Journal of the American Chemical Society.

[102]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[103]  E. Kool,et al.  Imaging of RNA in bacteria with self-ligating quenched probes. , 2002, Journal of the American Chemical Society.

[104]  Derek Toomre,et al.  Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe. , 2014, Angewandte Chemie.

[105]  R. Weissleder,et al.  Ultrafluorogenic coumarin-tetrazine probes for real-time biological imaging. , 2014, Angewandte Chemie.

[106]  Peng R. Chen,et al.  Diels-Alder reaction-triggered bioorthogonal protein decaging in living cells. , 2014, Nature chemical biology.

[107]  P. Conti,et al.  Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. , 2010, Chemical communications.

[108]  Xuan Yue,et al.  Nucleic acid-triggered fluorescent probe activation by the Staudinger reaction. , 2004, Journal of the American Chemical Society.

[109]  M. Royzen,et al.  A photochemical synthesis of functionalized trans-cyclooctenes driven by metal complexation. , 2008, Journal of the American Chemical Society.

[110]  E. Kool,et al.  Efficient nucleic acid detection by templated reductive quencher release. , 2009, Journal of the American Chemical Society.

[111]  Tymish Y. Ohulchanskyy,et al.  Fluorogenic, two-photon-triggered photoclick chemistry in live mammalian cells. , 2013, Journal of the American Chemical Society.

[112]  Hakho Lee,et al.  Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. , 2010, Nature nanotechnology.

[113]  K. Houk,et al.  Synthesis and reactivity comparisons of 1-methyl-3-substituted cyclopropene mini-tags for tetrazine bioorthogonal reactions. , 2014, Chemistry.

[114]  W. Reutter,et al.  Two-color glycan labeling of live cells by a combination of Diels-Alder and click chemistry. , 2013, Angewandte Chemie.

[115]  A. Schepartz,et al.  Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. , 2009, Journal of the American Chemical Society.

[116]  Haoxing Wu,et al.  In situ synthesis of alkenyl tetrazines for highly fluorogenic bioorthogonal live-cell imaging probes. , 2014, Angewandte Chemie.

[117]  Theodor Curtius,et al.  Einwirkung von Hydrazin auf m‐Cyanbenzoesäure , 1930 .

[118]  Suliana Manley,et al.  A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. , 2013, Nature chemistry.

[119]  A. Jäschke,et al.  Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry. , 2012, Bioconjugate chemistry.

[120]  M. Royzen,et al.  Site-specific fluorescence labelling of RNA using bio-orthogonal reaction of trans-cyclooctene and tetrazine. , 2014, Chemical communications.

[121]  J. Chin,et al.  Expanding the Genetic Code of an Animal , 2011, Journal of the American Chemical Society.

[122]  R. Raines,et al.  Diazo Compounds as Highly Tunable Reactants in 1,3-Dipolar Cycloaddition Reactions with Cycloalkynes(). , 2012, Chemical science.

[123]  Jennifer A. Prescher,et al.  1,2,4-Triazines Are Versatile Bioorthogonal Reagents. , 2015, Journal of the American Chemical Society.

[124]  Nurullah Saracoglu,et al.  Recent Advances and Applications in 1,2,4,5-Tetrazine Chemistry , 2007 .

[125]  G. Knudsen,et al.  Development of a (11)C-labeled tetrazine for rapid tetrazine-trans-cyclooctene ligation. , 2013, Chemical communications.

[126]  Stephen Wallace,et al.  Conformationally Strained trans-Cyclooctene with Improved Stability and Excellent Reactivity in Tetrazine Ligation. , 2014, Chemical science.

[127]  R. Weissleder,et al.  A Pretargeted PET Imaging Strategy Based on Bioorthogonal Diels–Alder Click Chemistry , 2013, The Journal of Nuclear Medicine.

[128]  Haoxing Wu,et al.  Electrochemical Control of Rapid Bioorthogonal Tetrazine Ligations for Selective Functionalization of Microelectrodes. , 2015, Journal of the American Chemical Society.

[129]  I. Keklikoglou,et al.  Rapid fluorescence imaging of miRNAs in human cells using templated Staudinger reaction , 2011 .