Compressive auto-indexing in femtosecond nanocrystallography.

Ultrafast nanocrystallography has the potential to revolutionize biology by enabling structural elucidation of proteins for which it is possible to grow crystals with 10 or fewer unit cells on the side. The success of nanocrystallography depends on robust orientation-determination procedures that allow us to average diffraction data from multiple nanocrystals to produce a three-dimensional (3D) diffraction data volume with a high signal-to-noise ratio. Such a 3D diffraction volume can then be phased using standard crystallographic techniques. "Indexing" algorithms used in crystallography enable orientation determination of diffraction data from a single crystal when a relatively large number of reflections are recorded. Here we show that it is possible to obtain the exact lattice geometry from a smaller number of measurements than standard approaches using a basis pursuit solver.

[1]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[2]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[3]  J. W. Campbell XDL-VIEW, an X-windows-based toolkit for crystallographic and other applications , 1995 .

[4]  Roger Fletcher,et al.  Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming , 2005, Numerische Mathematik.

[5]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Michael G. Rossmann,et al.  An Algorithm for Automatic Indexing of Oscillation Images using Fourier Analysis , 1997 .

[8]  Chao Zhang,et al.  A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region , 2008 .

[9]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[10]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[11]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[12]  Thomas Weiland,et al.  XFEL: The European X-Ray Free-Electron Laser - Technical Design Report , 2006 .

[13]  Ryszard S. Romaniuk,et al.  Operation of a free-electron laser from the extreme ultraviolet to the water window , 2007 .

[14]  J. W. Campbell The practicality of using a three-dimensional fast Fourier transform in auto-indexing protein single-crystal oscillation images , 1998 .

[15]  H. Chapman,et al.  Femtosecond protein nanocrystallography-data analysis methods. , 2010, Optics express.

[16]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[17]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[18]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[19]  S. Mallat A wavelet tour of signal processing , 1998 .

[20]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[21]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[22]  H. Chapman,et al.  X-ray imaging beyond the limits. , 2009, Nature materials.

[23]  James M. Holton,et al.  A beginner’s guide to radiation damage , 2009, Journal of synchrotron radiation.

[24]  Nicholas K. Sauter,et al.  LABELIT: Robust Indexing for Automatic Data Collection , 2004 .

[25]  J. M. Martínez,et al.  Inexact spectral projected gradient methods on convex sets , 2003 .

[26]  John Bingham,et al.  Data Processing , 1989, Macmillan Professional Masters.

[27]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[28]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[29]  Nicholas K. Sauter,et al.  Robust indexing for automatic data collection , 2004, Journal of applied crystallography.

[30]  H R Powell,et al.  The Rossmann Fourier autoindexing algorithm in MOSFLM. , 1999, Acta crystallographica. Section D, Biological crystallography.

[31]  Lexing Ying,et al.  Sparse Fourier Transform via Butterfly Algorithm , 2008, SIAM J. Sci. Comput..

[32]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[33]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[34]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[35]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[36]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[37]  Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .