The chromatic symmetric function of a graph centred at a vertex
暂无分享,去创建一个
Stephanie van Willigenburg | Farid Aliniaeifard | Victor Wang | V. Wang | F. Aliniaeifard | S. Willigenburg
[1] Brendan Pawlowski,et al. Chromatic symmetric functions via the group algebra of $S_n$ , 2018, 1802.05470.
[2] Mathieu Guay-Paquet,et al. A modular relation for the chromatic symmetric functions of (3+1)-free posets , 2013, 1306.2400.
[3] José Zamora,et al. Proper caterpillars are distinguished by their chromatic symmetric function , 2014, Discret. Math..
[4] Meesue Yoo,et al. Melting lollipop chromatic quasisymmetric functions and Schur expansion of unicellular LLT polynomials , 2018, Discret. Math..
[5] Michelle L. Wachs,et al. Chromatic quasisymmetric functions , 2014, 1405.4629.
[6] Stephanie van Willigenburg,et al. Chromatic symmetric functions in noncommuting variables revisited , 2019, Adv. Appl. Math..
[7] Jeremy L. Martin,et al. On distinguishing trees by their chromatic symmetric functions , 2008, J. Comb. Theory, Ser. A.
[8] Richard P. Stanley,et al. On Immanants of Jacobi-Trudi Matrices and Permutations with Restricted Position , 1993, J. Comb. Theory, Ser. A.
[9] Stephanie van Willigenburg,et al. Lollipop and Lariat Symmetric Functions , 2017, SIAM J. Discret. Math..
[10] Bruce E. Sagan,et al. A Chromatic Symmetric Function in Noncommuting Variables , 2001 .
[11] Kang-Ju Lee,et al. Acyclic orientation polynomials and the sink theorem for chromatic symmetric functions , 2021, J. Comb. Theory, Ser. B.
[12] Sophie Spirkl,et al. A Vertex-Weighted Tutte Symmetric Function, and Constructing Graphs with Equal Chromatic Symmetric Function , 2021, Electron. J. Comb..
[13] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[14] S. Heil,et al. On an algorithm for comparing the chromatic symmetric functions of trees , 2018, Australas. J Comb..
[15] Richard P. Stanley,et al. A Symmetric Function Generalization of the Chromatic Polynomial of a Graph , 1995 .
[16] G. Birkhoff. A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .
[17] Stephanie van Willigenburg,et al. Chromatic posets , 2021, J. Comb. Theory, Ser. A.
[18] T. Chow,et al. Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties , 2015, 1511.00773.
[20] Stephanie van Willigenburg,et al. Schur and e-Positivity of Trees and Cut Vertices , 2020, Electron. J. Comb..
[21] Bruce E. Sagan,et al. Symmetric functions in noncommuting variables , 2002, math/0208168.
[22] M. Loebl,et al. Isomorphism of weighted trees and Stanley's isomorphism conjecture for caterpillars , 2019, Annales de l’Institut Henri Poincaré D.
[23] M. Harada,et al. The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture , 2017, Algebraic Combinatorics.
[24] Alex Abreu,et al. Chromatic symmetric functions from the modular law , 2021, J. Comb. Theory, Ser. A.