The chromatic symmetric function of a graph centred at a vertex

We discover new linear relations between the chromatic symmetric functions of certain sequences of graphs and apply these relations to find new families of e-positive unit interval graphs. Motivated by the results of Gebhard and Sagan, we revisit their ideas and reinterpret their equivalence relation in terms of a new quotient algebra of NCSym. We investigate the projection of the chromatic symmetric function YG in noncommuting variables in this quotient algebra, which defines yG:v, the chromatic symmetric function of a graph G centred at a vertex v. We then apply our methods to yG:v and find new families of unit interval graphs that are (e)-positive, a stronger condition than classical e-positivity, thus confirming new cases of the (3 + 1)-free conjecture of Stanley and Stembridge. In our study of yG:v, we also describe methods of constructing new e-positive graphs from given (e)-positive graphs and classify the (e)-positivity of trees and cut vertices. We moreover construct a related quotient algebra of NCQSym to prove theorems relating the coefficients of yG:v to acyclic orientations of graphs, including a noncommutative refinement of Stanley’s sink theorem.

[1]  Brendan Pawlowski,et al.  Chromatic symmetric functions via the group algebra of $S_n$ , 2018, 1802.05470.

[2]  Mathieu Guay-Paquet,et al.  A modular relation for the chromatic symmetric functions of (3+1)-free posets , 2013, 1306.2400.

[3]  José Zamora,et al.  Proper caterpillars are distinguished by their chromatic symmetric function , 2014, Discret. Math..

[4]  Meesue Yoo,et al.  Melting lollipop chromatic quasisymmetric functions and Schur expansion of unicellular LLT polynomials , 2018, Discret. Math..

[5]  Michelle L. Wachs,et al.  Chromatic quasisymmetric functions , 2014, 1405.4629.

[6]  Stephanie van Willigenburg,et al.  Chromatic symmetric functions in noncommuting variables revisited , 2019, Adv. Appl. Math..

[7]  Jeremy L. Martin,et al.  On distinguishing trees by their chromatic symmetric functions , 2008, J. Comb. Theory, Ser. A.

[8]  Richard P. Stanley,et al.  On Immanants of Jacobi-Trudi Matrices and Permutations with Restricted Position , 1993, J. Comb. Theory, Ser. A.

[9]  Stephanie van Willigenburg,et al.  Lollipop and Lariat Symmetric Functions , 2017, SIAM J. Discret. Math..

[10]  Bruce E. Sagan,et al.  A Chromatic Symmetric Function in Noncommuting Variables , 2001 .

[11]  Kang-Ju Lee,et al.  Acyclic orientation polynomials and the sink theorem for chromatic symmetric functions , 2021, J. Comb. Theory, Ser. B.

[12]  Sophie Spirkl,et al.  A Vertex-Weighted Tutte Symmetric Function, and Constructing Graphs with Equal Chromatic Symmetric Function , 2021, Electron. J. Comb..

[13]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[14]  S. Heil,et al.  On an algorithm for comparing the chromatic symmetric functions of trees , 2018, Australas. J Comb..

[15]  Richard P. Stanley,et al.  A Symmetric Function Generalization of the Chromatic Polynomial of a Graph , 1995 .

[16]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[17]  Stephanie van Willigenburg,et al.  Chromatic posets , 2021, J. Comb. Theory, Ser. A.

[18]  T. Chow,et al.  Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties , 2015, 1511.00773.

[20]  Stephanie van Willigenburg,et al.  Schur and e-Positivity of Trees and Cut Vertices , 2020, Electron. J. Comb..

[21]  Bruce E. Sagan,et al.  Symmetric functions in noncommuting variables , 2002, math/0208168.

[22]  M. Loebl,et al.  Isomorphism of weighted trees and Stanley's isomorphism conjecture for caterpillars , 2019, Annales de l’Institut Henri Poincaré D.

[23]  M. Harada,et al.  The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture , 2017, Algebraic Combinatorics.

[24]  Alex Abreu,et al.  Chromatic symmetric functions from the modular law , 2021, J. Comb. Theory, Ser. A.