Benchmarking for Steganography by Kernel Fisher Discriminant Criterion

In recent years, there have been many steganographic schemes designed by different technologies to enhance their security. And a benchmarking scheme is needed to measure which one is more detectable. In this paper, we propose a novel approach of benchmarking for steganography via Kernel Fisher Discriminant Criterion (KFDC), independent of the techniques in steganalysis. In KFDC, besides between-class variance resembles what Maximum Mean Discrepancy (MMD)merely concentrated on, within-class variance plays another important role. Experiments show that KFDC is qualified for the indication of the detectability of steganographic algorithms. Then, we use KFDC to illustrate detailed analysis on the security of JPEG and spatial steganographic algorithms.

[1]  Jessica J. Fridrich,et al.  Calibration revisited , 2009, MM&Sec '09.

[2]  Gregory W. Wornell,et al.  Quantization index modulation: A class of provably good methods for digital watermarking and information embedding , 2001, IEEE Trans. Inf. Theory.

[3]  Dana S. Richards,et al.  Modified Matrix Encoding Technique for Minimal Distortion Steganography , 2006, Information Hiding.

[4]  Phil Sallee,et al.  Model-Based Steganography , 2003, IWDW.

[5]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[6]  John Langford,et al.  Provably Secure Steganography , 2002, IEEE Transactions on Computers.

[7]  Petra Mutzel,et al.  A Graph-Theoretic Approach to Steganography , 2005, Communications and Multimedia Security.

[8]  Jessica J. Fridrich,et al.  On completeness of feature spaces in blind steganalysis , 2008, MM&Sec '08.

[9]  Lisa M. Marvel,et al.  Spread spectrum image steganography , 1999, IEEE Trans. Image Process..

[10]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Tomás Pevný,et al.  Statistically undetectable jpeg steganography: dead ends challenges, and opportunities , 2007, MM&Sec.

[12]  Ingo Steinwart,et al.  On the Influence of the Kernel on the Consistency of Support Vector Machines , 2002, J. Mach. Learn. Res..

[13]  Bart De Decker,et al.  Communications and Multimedia Security , 2013, Lecture Notes in Computer Science.

[14]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[15]  Bart Kosko,et al.  Neural networks for signal processing , 1992 .

[16]  J. Mielikainen LSB matching revisited , 2006, IEEE Signal Processing Letters.

[17]  Tomás Pevný,et al.  Steganalysis by subtractive pixel adjacency matrix , 2010, IEEE Trans. Inf. Forensics Secur..

[18]  R. Fisher THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .

[19]  Andreas Westfeld,et al.  F5-A Steganographic Algorithm , 2001, Information Hiding.

[20]  Moti Yung,et al.  Advances in Cryptology — CRYPTO 2002 , 2002, Lecture Notes in Computer Science.

[21]  Tomás Pevný,et al.  Steganalysis by Subtractive Pixel Adjacency Matrix , 2009, IEEE Transactions on Information Forensics and Security.

[22]  Christian Cachin,et al.  An information-theoretic model for steganography , 1998, Inf. Comput..

[23]  Jennifer L. Davidson,et al.  Steganalysis Using Partially Ordered Markov Models , 2010, Information Hiding.

[24]  Tomás Pevný,et al.  Merging Markov and DCT features for multi-class JPEG steganalysis , 2007, Electronic Imaging.

[25]  Nasir D. Memon,et al.  Benchmarking steganographic and steganalysis techniques , 2005, IS&T/SPIE Electronic Imaging.

[26]  Ying Wang,et al.  Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions , 2007, IEEE Transactions on Information Theory.

[27]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[28]  Ingemar J. Cox,et al.  Digital Watermarking , 2003, Lecture Notes in Computer Science.

[29]  Tomás Pevný,et al.  Using High-Dimensional Image Models to Perform Highly Undetectable Steganography , 2010, Information Hiding.

[30]  Tomás Pevný,et al.  Benchmarking for Steganography , 2008, Information Hiding.

[31]  Jana Dittmann,et al.  Transparency benchmarking on audio watermarks and steganography , 2006, Electronic Imaging.