SPATIALLY RESOLVED Hα MAPS AND SIZES OF 57 STRONGLY STAR-FORMING GALAXIES AT z ∼ 1 FROM 3D-HST: EVIDENCE FOR RAPID INSIDE-OUT ASSEMBLY OF DISK GALAXIES

We investigate the buildup of galaxies at z ∼ 1 using maps of Hα and stellar continuum emission for a sample of 57 galaxies with rest-frame Hα equivalent widths >100 Å in the 3D-HST grism survey. We find that the Hα emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median Hα effective radius re(Hα) is 4.2 ± 0.1 kpc but the sizes span a large range, from compact objects with re(Hα) ∼ 1.0 kpc to extended disks with re(Hα) ∼ 15 kpc. Comparing Hα sizes to continuum sizes, we find =1.3 ± 0.1 for the full sample. That is, star formation, as traced by Hα, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured Hα sizes, we derive star formation rate surface densities, ΣSFR. We find that ΣSFR ranges from ∼0.05 M☉ yr−1 kpc−2 for the largest galaxies to ∼5 M☉ yr−1 kpc−2 for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z ∼ 1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times <500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z ∼ 1.

[1]  Stijn Wuyts,et al.  WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS , 2011, 1110.3786.

[2]  H. Rix,et al.  FIRST RESULTS FROM THE 3D-HST SURVEY: THE STRIKING DIVERSITY OF MASSIVE GALAXIES AT z > 1 , 2011, 1108.6060.

[3]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[4]  Alice E. Shapley,et al.  Physical Properties of Galaxies from z = 2–4 , 2011, 1107.5060.

[5]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: high-resolution kinematics of luminous star-forming galaxies , 2011, 1107.3338.

[6]  David R. Law,et al.  AN HST/WFC3-IR MORPHOLOGICAL SURVEY OF GALAXIES AT z = 1.5–3.6. I. SURVEY DESCRIPTION AND MORPHOLOGICAL PROPERTIES OF STAR-FORMING GALAXIES , 2011, 1107.3137.

[7]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[8]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[9]  R. Genzel,et al.  CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. II. PROPERTIES OF KILOPARSEC-SCALE CLUMPS IN REST-FRAME OPTICAL EMISSION OF z ∼ 2 STAR-FORMING GALAXIES , 2011, 1104.0248.

[10]  L. Kewley,et al.  METALLICITY GRADIENT OF A LENSED FACE-ON SPIRAL GALAXY AT REDSHIFT 1.49 , 2011, 1103.3277.

[11]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[12]  R. Genzel,et al.  CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. I. DETAILED REST-FRAME OPTICAL MORPHOLOGIES ON KILOPARSEC SCALE OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1011.1507.

[13]  F. Mannucci,et al.  Gas accretion as the origin of chemical abundance gradients in distant galaxies , 2010, Nature.

[14]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[15]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[16]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[17]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[18]  Johan Richard,et al.  Resolved spectroscopy of gravitationally lensed galaxies: recovering coherent velocity fields in subluminous z ~ 2-3 galaxies , 2009, 0910.4488.

[19]  G. Illingworth,et al.  THE HUBBLE SEQUENCE BEYOND z = 2 FOR MASSIVE GALAXIES: CONTRASTING LARGE STAR-FORMING AND COMPACT QUIESCENT GALAXIES , 2009, 0909.0260.

[20]  M. Franx,et al.  THE EVOLVING RELATIONS BETWEEN SIZE, MASS, SURFACE DENSITY, AND STAR FORMATION IN 3 × 104 GALAXIES SINCE z = 2 , 2009, 0906.4786.

[21]  A. Helmi,et al.  The origin of extended disc galaxies at z= 2 , 2009, 0905.3554.

[22]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[23]  James E. Larkin,et al.  THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.

[24]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[25]  Anna Pasquali,et al.  The Slitless Spectroscopy Data Extraction Software aXe , 2008, 0812.1434.

[26]  J. Wadsley,et al.  THE ROLE OF COLD FLOWS IN THE ASSEMBLY OF GALAXY DISKS , 2008, 0812.0007.

[27]  James E. Larkin,et al.  DYNAMICS OF GALACTIC DISKS AND MERGERS AT z ∼ 1.6: SPATIALLY RESOLVED SPECTROSCOPY WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS , 2008, 0810.5599.

[28]  E. Gawiser,et al.  THE EVOLUTION OF THE SPECIFIC STAR FORMATION RATE OF MASSIVE GALAXIES TO z ∼ 1.8 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2008, 0809.1426.

[29]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[30]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[31]  R. J. Ivison,et al.  HiZELS: a high-redshift survey of Hα emitters – I. The cosmic star formation rate and clustering at z= 2.23 , 2008, 0805.2861.

[32]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[33]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[34]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[35]  H. Rix,et al.  The Dependence of Star Formation on Galaxy Stellar Mass , 2007, astro-ph/0702208.

[36]  S. M. Fall,et al.  The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.

[37]  Joel R. Primack,et al.  The Rest-Frame Far-Ultraviolet Morphologies of Star-Forming Galaxies at z ~ 1.5 and 4 , 2006 .

[38]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[39]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[40]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[41]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[42]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[43]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[44]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .