The Boltzmann–Hamel equations for the optimal control of mechanical systems with nonholonomic constraints

In this paper we generalize the Boltzmann-Hamel equations for nonholonomic mechanics to a form suited for the kinematic or dynamic optimal control of mechanical systems subject to nonholonomic constraints. In solving these equations one is able to eliminate the controls and compute the optimal trajectory from a set of coupled first order differential equations with boundary values. We compare our approach to standard approaches on a sample of mechanical problems. In particular we derive a set of differential equations that yields the optimal reorientation path of a free rigid body. In the special case of a sphere, we show that the optimal trajectory coincides with the cubic splines on SO(3).

[1]  Sonia Martinez,et al.  Symmetries in vakonomic dynamics: applications to optimal control , 2001 .

[2]  Jared M. Maruskin,et al.  On the Dynamical Propagation of Subvolumes and on the Geometry and Variational Principles of Nonholonomic Systems. , 2008 .

[3]  Jerrold E. Marsden,et al.  Quasivelocities and symmetries in non-holonomic systems , 2009 .

[4]  Marco Favretti,et al.  Equivalence of Dynamics for Nonholonomic Systems with Transverse Constraints , 1998 .

[5]  J. G. Papastavridis Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems , 2014 .

[6]  J. Marsden,et al.  Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .

[7]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[8]  I. Neĭmark,et al.  On the transpositional relations in analytical mechanics of nonholonomic systems , 1960 .

[9]  P. Krishnaprasad,et al.  The Euler-Poincaré equations and double bracket dissipation , 1996 .

[10]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[11]  Anthony M. Bloch,et al.  Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[12]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[13]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[14]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[15]  Marco Favretti,et al.  On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints , 1996 .

[16]  P. Crouch,et al.  On the geometry of Riemannian cubic polynomials , 2001 .

[17]  Wei Kang,et al.  Pseudospectral Optimal Control Theory Makes Debut Flight, Saves NASA $1M in Under Three Hours , 2007 .

[18]  Anthony M. Bloch,et al.  The Boltzmann-Hamel equations for optimal control , 2007, 2007 46th IEEE Conference on Decision and Control.

[19]  N. Bedrossian,et al.  Space station Zero-Propellant Maneuver guidance trajectories compared to eigenaxis , 2008, 2008 American Control Conference.

[20]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[21]  Sagar Bhatt,et al.  First Ever Flight Demonstration of Zero Propellant Maneuver TM Attitude Control Concept , 2007 .

[22]  D. T. Greenwood,et al.  Advanced Dynamics: Frontmatter , 2003 .

[23]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[24]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[25]  P. Crouch,et al.  The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .

[26]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[27]  Sagar A. Bhatt,et al.  Optimal Reorientation of Spacecraft Using Only Control Moment Gyroscopes , 2007 .

[28]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[29]  V. Arnold,et al.  Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics , 1989 .

[30]  Sonia Martínez,et al.  Optimal Gaits for Dynamic Robotic Locomotion , 2001, Int. J. Robotics Res..