Wet chemical porosification of LTCC in phosphoric acid: Anorthite forming tapes

Abstract With the porosification of sintered Low Temperature Co-fired Ceramic (LTCC) surfaces areas with alternating dielectric properties can be created by embedding air. The method, including a wet-chemical treatment with phosphoric acid, is also investigated in detail for several commercial celsian forming tapes. Since the results of these materials cannot provide the required selectivity, in this work the analysis is extended to anorthite forming tapes. Furthermore, the investigations include a LTCC based on lanthanum borate. The results show that the porosification with phosphoric acid is not applicable to the latter material. In contrast, the silicate based, corundum containing tapes feature the most satisfying porosification results. Thereby, the stability of the glass, the size of the grains, the exclusivity of the crystallized phase and its degree of crystallization are identified as the tape features which directly influence the porosification results.

[1]  Aicha Elshabini,et al.  Ceramic Interconnect Technology Handbook , 2007 .

[2]  K. Leinenweber,et al.  Structure of a new form of silicon phosphate (SiP2O7) synthesized at high pressures and temperatures , 2012 .

[3]  Ulrich Schmid,et al.  The porosification of fired LTCC substrates by applying a wet chemical etching procedure , 2009 .

[4]  Andreas Roosen,et al.  Characterization and improvement of LTCC composite materials for application at elevated temperatures , 2010 .

[5]  Peng Wang,et al.  Chemical, structural, and mechanical properties of the LTCC tapes , 2000 .

[6]  A. Xu,et al.  Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. , 2003, Journal of the American Chemical Society.

[7]  U. Schmid,et al.  Wet chemical porosification of LTCC in phosphoric acid: Celsian forming tapes , 2015 .

[8]  Walter Loewenstein,et al.  The distribution of aluminum in the tetrahedra of silicates and aluminates , 1954 .

[9]  Y. Ishibashi,et al.  Needle twins and right-angled twins in minerals: Comparison between experiment and theory , 1998 .

[10]  S. K. Sadrnezhaad,et al.  Chemical durability of lead silicate glass in HNO3, HCl and H2SO4 aqueous acid solutions , 2009 .

[11]  Hyungsun Kim,et al.  Effect of anorthite and diopside on dielectric properties of Al2O3/glass composite based on high strength of LTCC substrate , 2008, Journal of Materials Science.

[12]  D. Day,et al.  Effect of R3+ Ions on the Structure and Properties of Lanthanum Borate Glasses , 1985 .

[13]  Dong Joo Shin,et al.  Phase Evolution and Microwave Dielectric Properties of Lanthanum Borate‐Based Low‐Temperature Co‐Fired Ceramics Materials , 2006 .

[14]  Marion Gemeinert,et al.  Über LTCC-Werkstoffe aus dem Stoffsystem CaO-La2O3-Al2O3-B2O3 , 2008 .

[15]  T. Mah,et al.  Synthesis and characterization of lanthanum phosphate sol for fibre coating , 1997 .

[16]  R. Mészáros,et al.  Dissolution of Alumina, Sintering, and Crystallization in Glass Ceramic Composites for LTCC , 2009 .

[17]  D. Suvorov,et al.  A structural and dielectric characterization of NaxCa1−xAl2−xSi2+xO8 (x = 0 and 1) ceramics , 2005 .

[18]  R. Weigel,et al.  A finite 3D field simulation method for permittivity gradient implementation of a novel porosification process in LTCC , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[19]  C. Ahn,et al.  EELS atlas : a reference collection of electron energy loss spectra covering all stable elements , 1983 .

[20]  Mustapha Sadki,et al.  The HighScore suite , 2014, Powder Diffraction.

[21]  Young-Shin Jun,et al.  Effects of Al/Si ordering on feldspar dissolution: Part I. Crystallographic control on the stoichiometry of dissolution reaction , 2014 .

[22]  Thierry Epicier,et al.  Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: A study based on the nanometer-scale chemistry of fluid–silicate interfaces , 2012 .

[23]  U. Schmid,et al.  Investigation on the Porosification Behaviour of Fired LTCC Substrates , 2009 .

[24]  Ulrich Schmid,et al.  Imaging Millimeter Wave Radar with Phased Array Antenna , 2008 .

[25]  D. Avnir,et al.  Recommendations for the characterization of porous solids (Technical Report) , 1994 .

[26]  T. Chin,et al.  Solid-state synthesis of ceramics in the BaO–SrO–Al2O3–SiO2 system , 2004 .

[27]  K. Hüttner Über die Einwirkung der Phosphorsäure auf Kieselsäure und Silikatgläser , 1908 .

[28]  Marko Hrovat,et al.  The Effect of Processing Conditions on the Properties of LTCC Material , 2012 .

[29]  文男 内木場,et al.  Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, 著者 Yoshihiko Imanaka, 出版社 Springer Science+Business Media Inc./USA, 発行年 2005年, ISBN 0-387-23130-7, $129.00 , 2005 .

[30]  A. Paul Chemical durability of glasses; a thermodynamic approach , 1977 .

[31]  C. Amrhein,et al.  Some factors affecting the dissolution kinetics of anorthite at 25°C , 1992 .

[32]  B. Pevzner,et al.  Influence of the cation nature on some dilatometric glass properties in the systems RO-Al2O3-B2O3 (R=Mg, Ca, Sr, Ba) , 2006 .

[33]  H. Scholze Chemical durability of glasses , 1982 .

[34]  A. Lüttge,et al.  Morphological evolution of dissolving feldspar particles with anisotropic surface kinetics and implications for dissolution rate normalization and grain size dependence: A kinetic modeling study , 2009 .

[35]  Marta Martinez-Vazquez,et al.  60 GHz embedded antennas on LTCC substrate , 2010, 2010 Conference Proceedings ICECom, 20th International Conference on Applied Electromagnetics and Communications.

[36]  E. Oelkers,et al.  Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis , 1995 .

[37]  Patrick Jollivet,et al.  Insight into silicate-glass corrosion mechanisms. , 2008, Nature materials.

[38]  Y. Cho,et al.  Influences of particle size of alumina filler in an LTCC system , 2007 .

[39]  P. Fenter,et al.  Resolving orthoclase dissolution processes with atomic force microscopy and X-ray reflectivity , 2001 .

[40]  D. Tallant,et al.  Polyhedral Arrangements in Lanthanum Aluminoborate Glasses , 2005 .

[41]  Wolfgang Menzel,et al.  Millimeter-wave radar for civil applications , 2010, The 7th European Radar Conference.

[42]  K.M. Strohm,et al.  Development of future short range radar technology , 2005, European Radar Conference, 2005. EURAD 2005..

[43]  S. Baccaro,et al.  Role of aluminium oxide in the structure of heavy metal oxide borosilicate glasses , 2012 .

[44]  Heinrich Remy,et al.  Lehrbuch der anorganischen Chemie , 1900, Nature.

[45]  R. W. Blanchar,et al.  Lead immobilization using phosphoric acid in a smelter-contaminated urban soil. , 2001, Environmental science & technology.

[46]  H. Zhu,et al.  Sintering, Microstructure and Dielectric Properties of Ca-Al-B-Si-O Glass/Al2O3 Composites with Various SiO2 Content , 2011 .

[47]  Sang‐Jin Lee,et al.  Mechanism of Preventing Crystallization in Low‐Firing Glass/Ceramic Composite Substrates , 1995 .

[48]  R. Conradt Chemical Durability of Oxide Glasses in Aqueous Solutions: A Review , 2008 .

[49]  I. Wolff Design and Technology of Microwave and Millimeterwave LTCC Circuits and Systems , 2007, 2007 International Symposium on Signals, Systems and Electronics.