Adaptive estimation of the copula correlation matrix for semiparametric elliptical copulas
暂无分享,去创建一个
[1] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .
[2] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[3] Herman Rubin,et al. Statistical Inference in Factor Analysis , 1956 .
[4] W. Kruskal. Ordinal Measures of Association , 1958 .
[5] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[6] R. Forthofer,et al. Rank Correlation Methods , 1981 .
[7] G. Simons,et al. On the theory of elliptically contoured distributions , 1981 .
[8] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[9] G. Watson. Characterization of the subdifferential of some matrix norms , 1992 .
[10] M. Kendall,et al. Rank Correlation Methods , 1949 .
[11] D. Petz. A survey of certain trace inequalities , 1994 .
[12] A. Sklar,et al. Random variables, distribution functions, and copulas---a personal look backward and forward , 1996 .
[13] C. Klaassen,et al. Efficient estimation in the bivariate normal copula model: normal margins are least favourable , 1997 .
[14] F. Lindskog,et al. Multivariate extremes, aggregation and dependence in elliptical distributions , 2002, Advances in Applied Probability.
[15] S. Kotz,et al. The Meta-elliptical Distributions with Given Marginals , 2002 .
[16] A. McNeil,et al. KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .
[17] P. Embrechts,et al. Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .
[18] Defeng Sun,et al. A Quadratically Convergent Newton Method for Computing the Nearest Correlation Matrix , 2006, SIAM J. Matrix Anal. Appl..
[19] A. McNeil,et al. The t Copula and Related Copulas , 2005 .
[20] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[21] C. Klüppelberg,et al. Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case , 2008 .
[22] Larry A. Wasserman,et al. The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..
[23] Claudia Klüppelberg,et al. Copula structure analysis , 2009 .
[24] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[25] Harrison H. Zhou,et al. Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.
[26] V. Koltchinskii,et al. Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.
[27] Pablo A. Parrilo,et al. Latent variable graphical model selection via convex optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[28] A. Tsybakov,et al. Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.
[29] Martin J. Wainwright,et al. Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.
[30] Xi Luo. High Dimensional Low Rank and Sparse Covariance Matrix Estimation via Convex Minimization , 2011 .
[31] Martin J. Wainwright,et al. Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions , 2011, ICML.
[32] M. Wegkamp,et al. Optimal selection of reduced rank estimators of high-dimensional matrices , 2010, 1004.2995.
[33] Pablo A. Parrilo,et al. Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..
[34] Sham M. Kakade,et al. Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.
[35] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[36] A. Tsybakov,et al. Comment: "Minimax estimation of large covariance matrices under ℓ1-norm'' , 2012 .
[37] H. Zou,et al. Positive-Definite ℓ1-Penalized Estimation of Large Covariance Matrices , 2012, 1208.5702.
[38] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[39] F. Bunea,et al. On the sample covariance matrix estimator of reduced effective rank population matrices, with applications to fPCA , 2012, 1212.5321.
[40] Harrison H. Zhou,et al. MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER ℓ1-NORM , 2012 .
[41] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[42] Tong Zhang,et al. A General Framework of Dual Certificate Analysis for Structured Sparse Recovery Problems , 2012, 1201.3302.
[43] Harrison H. Zhou,et al. OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION , 2012, 1302.3030.
[44] H. Zou,et al. Regularized rank-based estimation of high-dimensional nonparanormal graphical models , 2012, 1302.3082.
[45] Pablo A. Parrilo,et al. Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting , 2012, SIAM J. Matrix Anal. Appl..
[46] Larry A. Wasserman,et al. High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.
[47] J. Tropp. User-Friendly Tools for Random Matrices: An Introduction , 2012 .
[48] Karim Lounici. High-dimensional covariance matrix estimation with missing observations , 2012, 1201.2577.
[49] Fang Han,et al. Transelliptical Graphical Models , 2012, NIPS.
[50] Xi Luo,et al. N ov 2 01 1 High Dimensional Low Rank and Sparse Covariance Matrix Estimation via Convex Minimization ∗ , 2011 .
[51] Han Liu,et al. Optimal Rates of Convergence for Latent Generalized Correlation Matrix Estimation in Transelliptical Distribution , 2013 .
[52] Jianqing Fan,et al. Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[53] Han Liu,et al. Optimal Rates of Convergence of Transelliptical Component Analysis , 2013 .
[54] Cun-Hui Zhang,et al. Multivariate Analysis of Nonparametric Estimates of Large Correlation Matrices , 2014, 1403.6195.
[55] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..
[56] Han Liu,et al. Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution. , 2013, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.