Single-sided Bragg reflection waveguides with multilayer core for monolithic semiconductor parametric devices

We propose and examine single-stack matching-layer enhanced Bragg reflection waveguides (BRWs) as a platform for integrated parametric devices. The proposed designed is asymmetric in geometry, where a multilayer core is surrounded by a single-layer upper cladding and a lower quarter-wave Bragg mirror. The propagation of the Bragg mode in the new design relies on total internal reflection from the upper cladding and Bragg reflection from the lower periodic cladding. Analytical expressions for modal analysis of TE- and TM-polarized Bragg modes are derived. An AlxGa1−xAs second-harmonic generation device is theoretically examined to highlight nonlinear performance of the new design, and it is compared to symmetric phase-matched BRWs reported to date. The application of the same structure for generation of anticorrelated photon pairs is discussed.

[1]  Characteristics of Edge-Emitting Bragg Reflection Waveguide Lasers , 2010, IEEE Journal of Quantum Electronics.

[2]  A. Helmy,et al.  Proposal for on-chip generation and control of photon hyperentanglement. , 2011, Optics letters.

[3]  J. S. Aitchison,et al.  AlGaAs Below Half Bandgap:. the Silicon of Nonlinear Optical Materials , 1994 .

[4]  A. Helmy,et al.  Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides. , 2009, Optics letters.

[5]  A. Helmy,et al.  Monolithic Photonics Using Second-Order Optical Nonlinearities in Multilayer-Core Bragg Reflection Waveguides , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Amr S Helmy,et al.  Bragg reflection waveguide diode lasers. , 2009, Optics letters.

[7]  S. T. Peng,et al.  Analysis and design of grating couplers , 1977 .

[8]  T. Krauss,et al.  An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers , 2002 .

[9]  A. Helmy,et al.  Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides. , 2009, Optics letters.

[10]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .

[11]  Amr S. Helmy,et al.  Second harmonic generation in ridge Bragg reflection waveguides , 2008 .

[12]  A. Helmy,et al.  Pulsed- and continuous-wave difference-frequency generation in AlGaAs Bragg reflection waveguides , 2010 .

[13]  Dongpeng Kang,et al.  Broadband difference-frequency generation in AlGaAs Bragg reflection waveguides , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[14]  P. Abolghasem,et al.  Phase matching in monolithic Bragg reflection waveguides. , 2007, Optics letters.

[15]  Payam Abolghasem,et al.  Continuous-wave second harmonic generation in Bragg reflection waveguides. , 2009, Optics express.

[16]  P. Yeh,et al.  Theory of Bragg fiber , 1978 .

[17]  Payam Abolghasem,et al.  Type-0 second order nonlinear interaction in monolithic waveguides of isotropic semiconductors. , 2010, Optics express.

[18]  J. J. Burke,et al.  Design and fabrication of a single leakage-channel grating coupler. , 1993, Applied optics.

[19]  K. Chiang,et al.  Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors , 2008 .

[20]  Elias N. Glytsis,et al.  Multilayer waveguides: efficient numerical analysis of general structures , 1992 .