The EcoCyc Database

EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene, metabolite, reaction, operon, and metabolic pathway. The database also includes information on E. coli gene essentiality and on nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This review provides a detailed description of the data content of EcoCyc and of the procedures by which this content is generated.

[1]  Igor Goryanin,et al.  A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola , 2009, BMC Systems Biology.

[2]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[3]  C. Ryu,et al.  Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance , 2013, Nature Communications.

[4]  B. Bochner,et al.  Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. , 2001, Genome research.

[5]  Yan Zhang,et al.  PATRIC, the bacterial bioinformatics database and analysis resource , 2013, Nucleic Acids Res..

[6]  Peter D. Karp,et al.  Multidimensional annotation of the Escherichia coli K-12 genome , 2007, Nucleic acids research.

[7]  Janet M Thornton,et al.  Analysis of metabolic networks using a pathway distance metric through linear programming. , 2003, Metabolic engineering.

[8]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[9]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[10]  M. Frazier,et al.  Realizing the Potential of the Genome Revolution: The Genomes to Life Program , 2003, Science.

[11]  Peter D. Karp,et al.  Construction and completion of flux balance models from pathway databases , 2012, Bioinform..

[12]  James C. Hu,et al.  What we can learn about Escherichia coli through application of Gene Ontology. , 2009, Trends in microbiology.

[13]  Vinay Satish Kumar,et al.  GrowMatch: An Automated Method for Reconciling In Silico/In Vivo Growth Predictions , 2009, PLoS Comput. Biol..

[14]  Katherine H. Huang,et al.  A novel method for accurate operon predictions in all sequenced prokaryotes , 2005, Nucleic acids research.

[15]  B. Palsson,et al.  Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates , 1993, Applied and environmental microbiology.

[16]  Joachim Selbig,et al.  Hypothesis-driven approach to predict transcriptional units from gene expression data , 2004, Bioinform..

[17]  Cyrus Chothia,et al.  Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae. , 2002, Genome research.

[18]  R. Larossa,et al.  Impact of genomic technologies on studies of bacterial gene expression. , 2002, Annual review of microbiology.

[19]  Johann Gasteiger,et al.  Uncovering metabolic pathways relevant to phenotypic traits of microbial genomes , 2009, Genome Biology.

[20]  Ramon Gonzalez,et al.  Gene Array‐Based Identification of Changes That Contribute to Ethanol Tolerance in Ethanologenic Escherichia coli: Comparison of KO11 (Parent) to LY01 (Resistant Mutant) , 2003, Biotechnology progress.

[21]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[22]  Mario Latendresse,et al.  Efficiently gap-filling reaction networks , 2014, BMC Bioinformatics.

[23]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.

[24]  Peter D. Karp,et al.  Curation accuracy of model organism databases , 2014, Database J. Biol. Databases Curation.

[25]  Peter D. Karp,et al.  The EcoCyc and MetaCyc databases , 2000, Nucleic Acids Res..

[26]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[27]  Wayne M Patrick,et al.  Multicopy suppression underpins metabolic evolvability. , 2007, Molecular biology and evolution.

[28]  Masanori Arita The metabolic world of Escherichia coli is not small. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Mulvey,et al.  Conditioning of Uropathogenic Escherichia coli for Enhanced Colonization of Host , 2009, Infection and Immunity.

[30]  Joshua A. Lerman,et al.  COBRApy: COnstraints-Based Reconstruction and Analysis for Python , 2013, BMC Systems Biology.

[31]  P. Karp,et al.  Addition of Escherichia coli K-12 Growth Observation and Gene Essentiality Data to the EcoCyc Database , 2013, Journal of bacteriology.

[32]  Suzanne M. Paley,et al.  Integrated pathway/genome databases and their role in drug discovery , 1999 .

[33]  J. Collado-Vides,et al.  The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. , 2000, Nucleic acids research.

[34]  A. Zeng,et al.  An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. , 2004, Nucleic acids research.

[35]  Lawrence Hunter,et al.  Predicting protein linkages in bacteria: Which method is best depends on task , 2008, BMC Bioinformatics.

[36]  Peter D. Karp,et al.  An ontology for biological function based on molecular interactions , 2000, Bioinform..

[37]  Hiroyuki Kaji,et al.  Only a Small Subset of the Horizontally Transferred Chromosomal Genes in Escherichia coli Are Translated into Proteins*S , 2004, Molecular & Cellular Proteomics.

[38]  Matteo Pellegrini,et al.  Prolinks: a database of protein functional linkages derived from coevolution , 2004, Genome Biology.

[39]  Fabio Rinaldi,et al.  RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond , 2015, Nucleic Acids Res..

[40]  V. Bernal,et al.  Metabolic engineering for high yielding L(-)-carnitine production in Escherichia coli , 2013, Microbial Cell Factories.

[41]  Peter D. Karp,et al.  EcoCyc: Encyclopedia of Escherichia coli genes and metabolism , 1998, Nucleic Acids Res..

[42]  Frank Hoffmann,et al.  Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 2. Redirection of metabolic fluxes. , 2002, Biotechnology and bioengineering.

[43]  Peter D. Karp,et al.  EcoCyc: a comprehensive database of Escherichia coli biology , 2010, Nucleic Acids Res..

[44]  Masaru Tomita,et al.  Update on the Keio collection of Escherichia coli single-gene deletion mutants , 2009, Molecular systems biology.

[45]  M. Riley,et al.  MultiFun, a multifunctional classification scheme for Escherichia coli K-12 gene products. , 2000, Microbial & comparative genomics.

[46]  S. Chevalier,et al.  Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. , 2007, Rapid communications in mass spectrometry : RCM.

[47]  P D Karp,et al.  Pathway Databases: A Case Study in Computational Symbolic Theories , 2001, Science.

[48]  Sang Yup Lee,et al.  Comparative multi-omics systems analysis of Escherichia coli strains B and K-12 , 2012, Genome Biology.

[49]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[50]  Manal AbuOun,et al.  Genome Scale Reconstruction of a Salmonella Metabolic Model , 2009, The Journal of Biological Chemistry.

[51]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[52]  Peter D. Karp,et al.  A Collaborative Environment for Authoring Large Knowledge Bases , 1999, Journal of Intelligent Information Systems.

[53]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[54]  Suzanne M. Paley,et al.  The Pathway Tools cellular overview diagram and Omics Viewer , 2006, Nucleic acids research.

[55]  Julio Collado-Vides,et al.  RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12 , 2001, Nucleic Acids Res..

[56]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[57]  G. Stephanopoulos,et al.  Network rigidity and metabolic engineering in metabolite overproduction , 1991, Science.

[58]  G. Moreno-Hagelsieb,et al.  The evolutionary dynamics of functional modules and the extraordinary plasticity of regulons: the Escherichia coli perspective , 2012, Nucleic acids research.

[59]  Jeremy D. Glasner,et al.  The evolution of metabolic networks of E. coli , 2011, BMC Systems Biology.

[60]  R. Zhang,et al.  Improving promoter prediction for the NNPP 2 . 2 algorithm : a case study using Escherichia coli DNA sequences , 2004 .

[61]  Ryosuke Watanabe,et al.  Inferring modules of functionally interacting proteins using the Bond Energy Algorithm , 2008, BMC Bioinformatics.

[62]  Janet M Thornton,et al.  Pathway evolution, structurally speaking. , 2002, Current opinion in structural biology.

[63]  Adam M. Feist,et al.  Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli , 2013, Molecular systems biology.

[64]  Volker Hecht,et al.  Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. , 2005, Microbiology.

[65]  Akash Ranjan,et al.  Effect of Reference Genome Selection on the Performance of Computational Methods for Genome-Wide Protein-Protein Interaction Prediction , 2012, PloS one.

[66]  Peter D. Karp,et al.  The EcoCyc Database , 2002, Nucleic Acids Res..

[67]  Peter D. Karp,et al.  EcoCyc: A comprehensive view of Escherichia coli biology , 2008, Nucleic Acids Res..

[68]  Peter D. Karp,et al.  A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database , 2014, BMC Systems Biology.

[69]  A. Bélaich,et al.  Microcalorimetric study of the anaerobic growth of Escherichia coli: growth thermograms in a synthetic medium , 1976, Journal of bacteriology.

[70]  Ramon Gonzalez,et al.  Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. , 2006, Biotechnology and bioengineering.

[71]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[72]  Andrew R. Joyce,et al.  Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli , 2006, Journal of bacteriology.

[73]  Alexander Gammerman,et al.  Sequence alignment kernel for recognition of promoter regions , 2003, Bioinform..

[74]  Julie A. Dickerson,et al.  Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities , 2011, BMC Bioinformatics.

[75]  Xueli Zhang,et al.  Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C , 2008, Biotechnology and bioengineering.

[76]  Peter D. Karp,et al.  Integrated Access to Metabolic and Genomic Data , 1996, J. Comput. Biol..

[77]  Monica Riley,et al.  Escherichia coli K-12: a cooperatively developed annotation snapshot—2005 , 2006, Nucleic acids research.

[78]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.