Nanostructured potential of optical trapping using a plasmonic nanoblock pair.

We performed two-dimensional mapping of optical trapping potentials experienced by a 100 nm dielectric particle above a plasmon-resonant gold nanoblock pair with a gap of several nanometers. Our results demonstrate that the potentials have nanoscale spatial structures that reflect the near-field landscape of the nanoblock pair. When an incident polarization parallel to the pair axis is rotated by 90°, a single potential well turns into multiple potential wells separated by a distance smaller than the diffraction limit; this is associated with super-resolution optical trapping. In addition, we show that the trap stiffness can be enhanced by approximately 3 orders of magnitude compared to that with conventional far-field trapping.

[1]  Distance-controlled scattering in a plasmonic trap , 2010 .

[2]  Sebastian J Maerkl,et al.  Integration of plasmonic trapping in a microfluidic environment. , 2009, Optics express.

[3]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[4]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[5]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[6]  Keiji Sasaki,et al.  Observation of the discrete transition of optically trapped particle position in the vicinity of an interface , 2004 .

[7]  Yi Li,et al.  Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. , 2012, Nano letters.

[8]  Wesley P. Wong,et al.  The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur. , 2006, Optics express.

[9]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[10]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[11]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Romain Quidant,et al.  Plasmon-assisted optofluidics. , 2011, ACS nano.

[13]  Tatsuya Shoji,et al.  Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon , 2010 .

[14]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[15]  Mark Dykman,et al.  Thermally activated transitions in a bistable three-dimensional optical trap , 1999, Nature.

[16]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[17]  Yong-Hee Lee,et al.  Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. , 2011, Nature communications.

[18]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[19]  Efficient optical trapping using small arrays of plasmonic nanoblock pairs , 2012 .

[20]  Federico Capasso,et al.  Bowtie plasmonic quantum cascade laser antenna. , 2007, Optics express.

[21]  Yoshito Y. Tanaka,et al.  Nanoscale interference patterns of gap-mode multipolar plasmonic fields , 2012, Scientific Reports.

[22]  Hiroto Tanaka,et al.  Simultaneous Observation of Individual ATPase and Mechanical Events by a Single Myosin Molecule during Interaction with Actin , 1998, Cell.

[23]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[24]  K. Schütze,et al.  Force generation of organelle transport measured in vivo by an infrared laser trap , 1990, Nature.

[25]  Kin Hung Fung,et al.  Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. , 2012, Nano letters.

[26]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[27]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[28]  Yoshito Y. Tanaka,et al.  Direct imaging of nanogap-mode plasmon-resonant fields. , 2011, Optics express.

[29]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[30]  Alexander Rohrbach,et al.  Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.

[31]  Romain Quidant,et al.  Thermoplasmonics modeling: A Green's function approach , 2010 .

[32]  K. Ohtaka,et al.  Surface Enhanced Raman Scattering by Metal Spheres. I. Cluster Effect , 1983 .

[33]  Keiji Sasaki,et al.  Three-dimensional Potential Analysis Of Radiation Pressure Exerted On A Single Microparticle , 1997, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[34]  Yoshito Y. Tanaka,et al.  Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs. , 2011, Optics express.