On the Use of Satellite Remote Sensing Data to Characterize and Map Fuel Types

Satellite remote sensing can successfully cope with different aspects of fire management problems, such as danger estimation, fire detection, burned area mapping and post-fire vegetation recovery. In particular, remote sensing can provide valuable data on type (namely distribution and amount of fuels) and status of vegetation in a consistent way at different spatial and temporal scales. The characterization and mapping of fuel types is one of the most important factors that should be taken into consideration for wildland fire prevention and pre-fire planning. In this paper, we provide a brief overview on the use of satellite data for the characterization and mapping of fuel type. Such research activities are part of the FUELMAP project, funded by JRC and focused on the development of fuel models for European ecosystems.

[1]  M. Nunez,et al.  Assessing Grassland Moisture and Biomass in Tasmania - the Application of Remote-Sensing and Empirical-Models for a Cloudy Environment , 1995 .

[2]  A. S. Belward,et al.  The limitations and potential of AVHRR GAC data for continental scale fire studies , 1994 .

[3]  Frieke Van Coillie,et al.  Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium , 2007 .

[4]  R. Burgan,et al.  Fuel Models and Fire Potential From Satellite and Surface Observations , 1998 .

[5]  Patricia L. Andrews,et al.  Fire modeling and information system technology , 2001 .

[6]  Sj Simard Fire Severity, Changing Scales, and How Things Hang Together , 1991 .

[7]  Nikos Koutsias,et al.  Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site , 2008 .

[8]  Li Jing,et al.  A Forest Fire Risk Assessment Using ASTER Images in Peninsular Malaysia , 2007 .

[9]  David O. Wallin,et al.  Two Decades of Carbon Flux from Forests of the Pacific Northwest , 1996 .

[10]  A. Chronopoulou-Sereli,et al.  Wildland Fire Danger Zoning – a Methodology , 1998 .

[11]  J. Omernik Ecoregions of the Conterminous United States , 1987 .

[12]  J. E. Deeming National Fire-Danger Rating System / , 1972 .

[13]  J. Michaelsen,et al.  Estimating grassland biomass and leaf area index using ground and satellite data , 1994 .

[14]  M. J. Cosentino,et al.  Describing the Brushfire Hazard in Southern California , 1985 .

[15]  Giovanni Bovio,et al.  Fuel type mapping with Landsat TM images and ancillary data in the Prealpine region of Italy , 2006 .

[16]  Bill Leenhouts,et al.  Assessment of Biomass Burning in the Conterminous United States , 1998 .

[17]  H. Lachowski,et al.  FUEL LOADING AND RISK ASSESSMENT LASSEN NATIONAL FOREST , 2022 .

[18]  F. Maselli Use of NOAA-AVHRR NDVI images for the estimation of dynamic fire risk in Mediterranean areas , 2003 .

[19]  Jesslyn F. Brown,et al.  Development of a land-cover characteristics database for the conterminous U.S. , 1991 .

[20]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy , 2006 .

[21]  E. Chuvieco Remote Sensing of Large Wildfires , 1999 .

[22]  J. Hudson A DIAMOND ANNIVERSARY , 1979 .

[23]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[24]  P. Defourny,et al.  Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery , 2006 .

[25]  I. Gitas,et al.  Object-oriented classification modelling for fuel type mapping in the Mediterranean, using LANDSAT TM and IKONOS imagery- preliminary results , 2002 .

[26]  Walter C. Oechel,et al.  The Role of Fire in Mediterranean-Type Ecosystems , 2011, Ecological Studies.

[27]  Wayne A. Miller,et al.  Comparison of fire fuel maps produced using MSS and AVHRR data , 1985 .

[28]  Robert E. Keane,et al.  Development of input data layers for the FARSITE fire growth model for the Selway-Bitterroot Wilderness Complex, USA , 1998 .

[29]  Fabio Maselli,et al.  Evaluation of forest fire risk by the analysis of environmental data and TM images , 1996 .

[30]  P. H. Kourtz,et al.  An application of LANDSAT digital technology to forest fire fuel type mapping , 1977 .

[31]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[32]  E. Chuvieco,et al.  Application of remote sensing and geographic information systems to forest fire hazard mapping. , 1989 .

[33]  Andrew C. Millington,et al.  Estimating Woody Biomass in Sub-Saharan Africa , 1994 .

[34]  J. Moreno,et al.  Methods for quantifying fire severity in shrubland-fires , 1998, Plant Ecology.

[35]  E. Chuvieco,et al.  Global fire mapping and fire danger estimation using AVHHR images , 1994 .

[36]  B. A. Wilson,et al.  Landsat MSS Classification of Fire Fuel Types in Wood Buffalo National Park, Northern Canada , 1994 .

[37]  Rosa Lasaponara,et al.  On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape , 2007 .

[38]  B. Oswald,et al.  Classifying fuels with aerial photography in East Texas , 1999 .

[39]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[40]  Sean P. Healey,et al.  Using object‐oriented classification and high‐resolution imagery to map fuel types in a Mediterranean region , 2006 .

[41]  Jack D. Cohen,et al.  The 1978 National Fire-Danger Rating System: technical documentation , 1984 .

[42]  D. Riaño,et al.  Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems , 2002 .

[43]  W. G. Morris Photo inventory of fine logging slash. , 1970 .

[44]  Ramakrishna R. Nemani,et al.  Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation , 1989 .

[45]  The Foundation For Province-wide Forest Fuel Mapping , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[46]  Sorin C. Popescu,et al.  Mapping surface fuel models using lidar and multispectral data fusion for fire behavior , 2008 .

[47]  Isabel Cristina Pascual Castaño,et al.  Fire models and methods to map fuel types: The role of remote sensing. , 2008 .

[48]  J. Pausas,et al.  2 The role of fire in European Mediterranean Ecosystems , 1999 .

[49]  Deriving dynamic information on fire fuel distributions in southern Californian chaparral from remotely sensed data , 1993 .

[50]  J. D. Tarpley,et al.  Vegetation cover mapping from NOAA/AVHRR , 1985 .

[51]  S. Muraro Slash fuel inventories from 70-mm low-level photography , 1970 .

[52]  R. Keane,et al.  Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico , 2000 .

[53]  P. Gong,et al.  Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama , 2004 .

[54]  R. Keane,et al.  Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling , 2001 .

[55]  Susan L. Ustin,et al.  Mapping the Distribution of Wildfire Fuels Using AVIRIS in the Santa Monica Mountains , 1998 .

[56]  W. Oechel,et al.  Fire Intensity as a Determinant Factor of Postfire Plant Recovery in Southern California Chaparral , 1994 .

[57]  Rosa Lasaponara,et al.  Remotely sensed characterization of forest fuel types by using satellite ASTER data , 2007, Int. J. Appl. Earth Obs. Geoinformation.