Combining Population‐Dynamic and Ecophysiological Models to Predict Climate‐Induced Insect Range Shifts

Hundreds of species are shifting their ranges in response to recent climate warming. To predict how continued climate warming will affect the potential, or “bioclimatic range,” of a skipper butterfly, we present a population‐dynamic model of range shift in which population growth is a function of temperature. We estimate the parameters of this model using previously published data for Atalopedes campestris. Summer and winter temperatures affect population growth rate independently in this species and therefore interact as potential range‐limiting factors. Our model predicts a two‐phase response to climate change; one range‐limiting factor gradually becomes dominant, even if warming occurs steadily along a thermally linear landscape. Whether the range shift accelerates or decelerates and whether the number of generations per year at the range edge increases or decreases depend on whether summer or winter warms faster. To estimate the uncertainty in our predictions of range shift, we use a parametric bootstrap of biological parameter values. Our results show that even modest amounts of data yield predictions with reasonably small confidence intervals, indicating that ecophysiological models can be useful in predicting range changes. Nevertheless, the confidence intervals are sensitive to regional differences in the underlying thermal landscape and the warming scenario.

[1]  J. Bale,et al.  Thermal ecology of gregarious and solitary nettle-feeding nymphalid butterfly larvae , 2000, Oecologia.

[2]  L. Crozier Winter warming facilitates range expansion: cold tolerance of the butterfly Atalopedes campestris , 2003, Oecologia.

[3]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[4]  M. Lynch,et al.  EVOLUTION AND EXTINCTION IN A CHANGING ENVIRONMENT: A QUANTITATIVE‐GENETIC ANALYSIS , 1995, Evolution; international journal of organic evolution.

[5]  M. Taper,et al.  Interspecific Competition, Environmental Gradients, Gene Flow, and the Coevolution of Species' Borders , 2000, The American Naturalist.

[6]  P. Sharpe,et al.  Modeling Distributions of Insect Development Time: a Literature Review and Application of the Weibull Function , 1984 .

[7]  T. Virtanen,et al.  Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with a Geographical Information System: predictions for current climate and warmer climate scenarios , 1998 .

[8]  Jesse A. Logan,et al.  Ghost Forests, Global Warming and the Mountain Pine Beetle , 2001 .

[9]  J. Newman Climate change and cereal aphids: the relative effects of increasing CO2 and temperature on aphid population dynamics , 2004 .

[10]  C. Jeffree,et al.  Temperature and the Biogeographical Distributions of Species , 1994 .

[11]  L. Crozier WARMER WINTERS DRIVE BUTTERFLY RANGE EXPANSION BY INCREASING SURVIVORSHIP , 2004 .

[12]  S. Ross,et al.  A First Course in Probability , 1977 .

[13]  M. Kot,et al.  Correction for Neubert et al., Invasion speeds in fluctuating environments , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[15]  P. Driessche,et al.  Dispersal data and the spread of invading organisms. , 1996 .

[16]  J. Newman,et al.  How predictable are aphid population responses to elevated CO2? , 2003, The Journal of animal ecology.

[17]  David R. Anderson,et al.  Model Selection and Inference: A Practical Information-Theoretic Approach , 2001 .

[18]  T. Dawson,et al.  Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? , 2003 .

[19]  P. Opler A Field Guide to Western Butterflies , 1986 .

[20]  Arctic Monitoring,et al.  Impacts of a warming Arctic : Arctic Climate Impact Assessment , 2004 .

[21]  Mark L. Taper,et al.  Theoretical models of species' borders: single species approaches , 2005 .

[22]  J. Pounds,et al.  Ecology: Clouded futures , 2004, Nature.

[23]  R. Holt,et al.  Allee Effects, Invasion Pinning, and Species’ Borders , 2001, The American Naturalist.

[24]  R. Lande,et al.  A Model of Population Growth, Dispersal and Evolution in a Changing Environment , 1989 .

[25]  Kenn Kaufman,et al.  Butterflies of North America , 2002 .

[26]  James A. Scott,et al.  The Butterflies of North America: A Natural History and Field Guide , 1986 .

[27]  E. García‐Barros Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). , 2000 .

[28]  Kevin J. Gaston,et al.  PATTERNS IN THE GEOGRAPHICAL RANGES OF SPECIES , 1990 .

[29]  M A Lewis,et al.  Invasion speeds in fluctuating environments , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  G. Coope Fossil coleopteran assemblages as sensitive indicators of climatic changes during the Devensian (Last) cold stage , 1977 .

[31]  F. Jiguet,et al.  Common birds facing global changes: what makes a species at risk? , 2004 .

[32]  양민선 IPCC(Intergovernmental Panel on climate Change) 외 , 2008 .

[33]  J. Bale Implications of Cold Hardiness for Pest Management , 1991 .

[34]  K. Briffa,et al.  Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains , 1987, Nature.

[35]  W. C. Cook Insects and Climate , 1932 .

[36]  Matthew P. Ayres,et al.  Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae) , 1999 .

[37]  O. Hoegh‐Guldberg,et al.  Ecological responses to recent climate change , 2002, Nature.

[38]  R. Holt,et al.  Species' borders: A unifying theme in ecology , 2005 .

[39]  James H. Brown,et al.  Using Montane Mammals to Model Extinctions Due to Global Change , 1992 .

[40]  L. Crozier,et al.  Field transplants reveal summer constraints on a butterfly range expansion , 2004, Oecologia.

[41]  M. B. Davis,et al.  Pleistocene biogeography of temperate deciduous forests , 1976 .

[42]  M. Austin Spatial prediction of species distribution: an interface between ecological theory and statistical modelling , 2002 .

[43]  I. Hodkinson Species response to global environmental change or why ecophysiological models are important: a reply to Davis et al. , 1999 .

[44]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[45]  M. Lynch Evolution and extinction in response to environ mental change. , 1993 .

[46]  J. Porter The effects of climate change on the agricultural environment for crop insect pests with particular reference to the European corn borer and grain maize , 1995 .

[47]  R. B. Jackson,et al.  Global biodiversity scenarios for the year 2100. , 2000, Science.

[48]  P. S. Messenger Bioclimatic Studies with Insects , 1959 .

[49]  M. Kirkpatrick,et al.  Evolution of a Species' Range , 1997, The American Naturalist.

[50]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[51]  Robert D. Holt,et al.  Adaptive Evolution in Source-Sink Environments: Direct and Indirect Effects of Density-Dependence on Niche Evolution , 1996 .

[52]  P. Bartlein,et al.  Global Changes During the Last 3 Million Years: Climatic Controls and Biotic Responses , 1992 .

[53]  L. Beaumont,et al.  Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change , 2002 .