Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization

In this paper we consider bound constrained global optimization problems where first-order derivatives of the objective function can be neither computed nor approximated explicitly. For the solution of such problems the DIRECT algorithm has been proposed which has a good ability to locate promising regions of the feasible domain and convergence properties based on the generation of a dense set of points over the feasible domain. However, the efficiency of DIRECT deteriorates as the dimension and the ill-conditioning of the objective function increase. To overcome these limits, we propose DIRECT-type algorithms enriched by the efficient use of derivative-free local searches combined with nonlinear transformations of the feasible domain and, possibly, of the objective function. We report extensive numerical results both on test problems from the literature and on an application in structural proteomics.

[1]  C. T. Kelley,et al.  A Locally-Biased form of the DIRECT Algorithm , 2001, J. Glob. Optim..

[2]  Julius Zilinskas,et al.  Simplicial Lipschitz optimization without the Lipschitz constant , 2013, Journal of Global Optimization.

[3]  Stefano Lucidi,et al.  A magnetic resonance device designed via global optimization techniques , 2004, Math. Program..

[4]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[5]  Yaroslav D. Sergeyev,et al.  Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants , 2015, Commun. Nonlinear Sci. Numer. Simul..

[6]  N. A. Allen,et al.  Deterministic Global Parameter Estimation for a Budding Yeast Model , 2006 .

[7]  Ray A. Jarvis,et al.  On the Identification of the Convex Hull of a Finite Set of Points in the Plane , 1973, Inf. Process. Lett..

[8]  Yaroslav D. Sergeyev,et al.  Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..

[9]  Stefano Lucidi,et al.  A partition-based global optimization algorithm , 2010, J. Glob. Optim..

[10]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[11]  Concettina Guerra,et al.  A global optimization algorithm for protein surface alignment , 2009, 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop.

[12]  Fabio Schoen,et al.  Efficient Algorithms for Large Scale Global Optimization: Lennard-Jones Clusters , 2003, Comput. Optim. Appl..

[13]  Julius Zilinskas,et al.  Globally-biased Disimpl algorithm for expensive global optimization , 2014, Journal of Global Optimization.

[14]  Gianni Di Pillo,et al.  A Derivative-Free Algorithm for Constrained Global Optimization Based on Exact Penalty Functions , 2013, Journal of Optimization Theory and Applications.

[15]  Marco Sciandrone,et al.  A Derivative-Free Algorithm for Bound Constrained Optimization , 2002, Comput. Optim. Appl..

[16]  Clifford A. Shaffer,et al.  Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle , 2008, J. Glob. Optim..

[17]  Y. Sergeyev On convergence of "divide the best" global optimization algorithms , 1998 .

[18]  Hans Bruun Nielsen UCTP - Test Problems for Unconstrained Optimization , 2000 .

[19]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[20]  Qunfeng Liu,et al.  Global optimization by multilevel partition , 2015, J. Glob. Optim..

[21]  Stefano Lucidi,et al.  A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems , 2010, Comput. Optim. Appl..

[22]  Yaroslav D. Sergeyev,et al.  Deterministic approaches for solving practical black-box global optimization problems , 2015, Adv. Eng. Softw..

[23]  Daniela di Serafino,et al.  A Modified DIviding RECTangles Algorithm for a Problem in Astrophysics , 2011, J. Optim. Theory Appl..

[24]  Remigijus Paulavičius,et al.  Simplicial Global Optimization , 2014 .

[25]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[26]  Marco Sciandrone,et al.  On the Global Convergence of Derivative-Free Methods for Unconstrained Optimization , 2002, SIAM J. Optim..

[27]  Qunfeng Liu,et al.  A modified DIRECT algorithm with bilevel partition , 2014, J. Glob. Optim..

[28]  Robert H. Leary,et al.  Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..

[29]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[30]  Clifford A. Shaffer,et al.  Dynamic Data Structures for a Direct Search Algorithm , 2002, Comput. Optim. Appl..

[31]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..