Symplectic splitting operator methods for the time-dependent Schrodinger equation.

We present a family of symplectic splitting methods especially tailored to solve numerically the time-dependent Schrodinger equation. When discretized in time, this equation can be recast in the form of a classical Hamiltonian system with a Hamiltonian function corresponding to a generalized high-dimensional separable harmonic oscillator. The structure of the system allows us to build highly efficient symplectic integrators at any order. The new methods are accurate, easy to implement, and very stable in comparison with other standard symplectic integrators.

[1]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[2]  Creutz,et al.  Higher-order hybrid Monte Carlo algorithms. , 1989, Physical review letters.

[3]  Robert I. McLachlan Families of High-Order Composition Methods , 2004, Numerical Algorithms.

[4]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[5]  D. Manolopoulos,et al.  Symplectic integrators tailored to the time‐dependent Schrödinger equation , 1996 .

[6]  André D. Bandrauk,et al.  Exponential split operator methods for solving coupled time-dependent Schrödinger equations , 1993 .

[7]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[8]  A. Bandrauk,et al.  Improved exponential split operator method for solving the time-dependent Schrödinger equation , 1991 .

[9]  Higher Order Unitary Integrators For The Schrödinger Equation , 1994 .

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  R. Kosloff,et al.  A fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics , 1983 .

[12]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[13]  Siu A. Chin,et al.  Symplectic integrators from composite operator factorizations , 1997 .

[14]  Stephen K. Gray,et al.  Optimal stability polynomials for splitting methods, with application to the time-dependent Schro¨dinger equation , 1997 .

[15]  Claude Leforestier,et al.  A comparison of different propagation schemes for the time dependent Schro¨dinger equation , 1991 .

[16]  Mark Sofroniou,et al.  Derivation of symmetric composition constants for symmetric integrators , 2005, Optim. Methods Softw..

[17]  M. Suzuki,et al.  Improved Trotter-like formula , 1993 .

[18]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[19]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[20]  B. M. Fulk MATH , 1992 .

[21]  H. Tal-Ezer,et al.  An accurate and efficient scheme for propagating the time dependent Schrödinger equation , 1984 .

[22]  Xinsheng Zhao,et al.  Numerical methods with a high order of accuracy applied in the quantum system , 1996 .

[23]  R. K. Preston,et al.  Quantum versus classical dynamics in the treatment of multiple photon excitation of the anharmonic oscillator , 1977 .

[24]  Fernando Casas,et al.  On the Numerical Integration of Ordinary Differential Equations by Processed Methods , 2004, SIAM J. Numer. Anal..

[25]  William Kahan,et al.  Composition constants for raising the orders of unconventional schemes for ordinary differential equations , 1997, Math. Comput..

[26]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[27]  R. Folk,et al.  Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Jialin Hong,et al.  Optimization of explicit symplectic schemes for time-dependent schrödinger equations , 2005 .

[29]  Jerrold E. Marsden,et al.  Integration Algorithms and Classical Mechanics , 1996 .

[30]  S. Gray,et al.  Classical Hamiltonian structures in wave packet dynamics , 1994 .

[31]  R. Kosloff Time-dependent quantum-mechanical methods for molecular dynamics , 1988 .