Self-propagating High-temperature Synthesis (SHS) and Spark Plasma Sintering (SPS) of Zr-, Hf- and Ta-based Ultra High Temperature Ceramics

[1]  M. Nygren,et al.  Improvement of the Spark-Plasma-Sintering Kinetics of ZrC by High-Energy Ball-Milling , 2012 .

[2]  Yu Zhou,et al.  Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites , 2011 .

[3]  R. Orrú,et al.  Spark plasma synthesis and densification of TaB2 by pulsed electric current sintering , 2011 .

[4]  T. Fisher,et al.  Spark Plasma Sintering of ZrB2–SiC–ZrC ultra-high temperature ceramics at 1800 °C , 2011 .

[5]  Yu Zhou,et al.  New route to densify tantalum carbide at 1400 °C by spark plasma sintering , 2011 .

[6]  Yu Zhou,et al.  Densification process of TaC/TaB2 composite in spark plasma sintering ☆ , 2011 .

[7]  G. Hilmas,et al.  Effect of Starting Particle Size and Oxygen Content on Densification of ZrB2 , 2011 .

[8]  S. R. Bakshi,et al.  Spark plasma sintered tantalum carbide: Effect of pressure and nano-boron carbide addition on microstructure and mechanical properties , 2011 .

[9]  Zuhair A. Munir,et al.  Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process , 2011 .

[10]  D. Sciti,et al.  Spark plasma sintering of HfB2 with low additions of silicides of molybdenum and tantalum , 2010 .

[11]  Ye Feng,et al.  Microstructure and Mechanical Properties of Spark Plasma Sintered TaC0.7 Ceramics , 2010 .

[12]  Y. Sakka,et al.  Microstructure and properties of ZrB2–SiC composites prepared by spark plasma sintering using TaSi2 as sintering additive , 2010 .

[13]  J. Vleugels,et al.  ZrB2―SiC composites prepared by reactive pulsed electric current sintering , 2010 .

[14]  E. Olevsky,et al.  Spark plasma sintering of tantalum carbide , 2010 .

[15]  M. Nygren,et al.  Microstructure and Toughening Mechanisms in Spark Plasma-Sintered ZrB2 Ceramics Reinforced by SiC Whiskers or SiC-Chopped Fibers , 2010 .

[16]  R. Orrú,et al.  Efficient technologies for the Fabrication of dense TaB2-based Ultra High Temperature Ceramics , 2010 .

[17]  R. Orrú,et al.  Synthesis, densification and characterization of TaB2–SiC composites , 2010 .

[18]  T. Goto,et al.  Microstructure and densification of ZrB2–SiC composites prepared by spark plasma sintering , 2009 .

[19]  Antonio Mario Locci,et al.  Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis , 2009 .

[20]  Jiecai Han,et al.  Processing and characterization of ZrB2–SiCW ultra-high temperature ceramics , 2009 .

[21]  Antonio Mario Locci,et al.  Consolidation/synthesis of materials by electric current activated/assisted sintering , 2009 .

[22]  G. Hilmas,et al.  Densification, Mechanical Properties, and Oxidation Resistance of TaC–TaB2 Ceramics , 2008 .

[23]  S. Guo,et al.  Elastic properties of spark plasma sintered (SPSed) ZrB2–ZrC–SiC composites , 2008 .

[24]  G. Hilmas,et al.  Synthesis, densification, and mechanical properties of TaB2 , 2008 .

[25]  Jiecai Han,et al.  Spark plasma sintering and hot pressing of ZrB2–SiCW ultra-high temperature ceramics , 2008 .

[26]  M. Nygren,et al.  Spark plasma sintering and mechanical behaviour of ZrC-based composites , 2008 .

[27]  Sylvia M. Johnson,et al.  Thermal Conductivity Characterization of Hafnium Diboride‐Based Ultra‐High‐Temperature Ceramics , 2008 .

[28]  M. Nygren,et al.  Densification and Mechanical Behavior of HfC and HfB2 Fabricated by Spark Plasma Sintering , 2008 .

[29]  D. Sciti,et al.  Spark plasma sintering and hot pressing of ZrB2–MoSi2 ultra-high-temperature ceramics , 2008 .

[30]  R. Orrú,et al.  Combination of SHS and SPS techniques for fabrication of fully dense ZrB2-ZrC-SiC composites , 2008 .

[31]  R. Orrú,et al.  Efficient Synthesis/Sintering Routes To Obtain Fully Dense Ultra-High-Temperature Ceramics (UHTCs) , 2007 .

[32]  K. Vanmeensel,et al.  Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing , 2007 .

[33]  D. Fang,et al.  Processing and Mechanical Properties of Zirconium Diboride‐Based Ceramics Prepared by Spark Plasma Sintering , 2007 .

[34]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[35]  F. Monteverde,et al.  Resistance to Thermal Shock and to Oxidation of Metal Diborides–SiC Ceramics for Aerospace Application , 2007 .

[36]  C. Melandri,et al.  Microstructure and mechanical properties of an HfB2 + 30 vol.% SiC composite consolidated by spark plasma sintering , 2006 .

[37]  Guo‐Jun Zhang,et al.  Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800°C , 2006 .

[38]  D. Sciti,et al.  Fabrication and properties of HfB_2–MoSi_2 composites produced by hot pressing and spark plasma sintering , 2006 .

[39]  B. Rapp Materials for extreme environments , 2006 .

[40]  Antonio Mario Locci,et al.  Simultaneous spark plasma synthesis and densification of TiC-TiB2 composites , 2006 .

[41]  Y. Kodera,et al.  Synthesis and characterization of dense ultra-high temperature thermal protection materials produced by field activation through spark plasma sintering (SPS): I. Hafnium Diboride , 2006 .

[42]  F. Monteverde Progress in the fabrication of ultra-high-temperature ceramics: “in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2–SiC composite , 2005 .

[43]  A. Bellosi,et al.  The resistance to oxidation of an HfB2–SiC composite , 2005 .

[44]  V. Medri,et al.  Comparison of ZrB2‐ZrC‐SiC Composites Fabricated by Spark Plasma Sintering and Hot‐Pressing , 2005 .

[45]  A. Bellosi,et al.  Efficacy of HfN as sintering aid in the manufacture of ultrahigh-temperature metal diborides-matrix ceramics , 2004 .

[46]  D. Erlich,et al.  Microhardness and high-velocity impact resistance of HfB2/SiC and ZrB2/SiC composites , 2004 .

[47]  Donald T. Ellerby,et al.  Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics , 2004 .

[48]  William G. Fahrenholtz,et al.  Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics , 2004 .

[49]  Satoshi Yamamoto,et al.  MA-SHS and SPS of ZrB2–ZrC composites , 2004 .

[50]  L. Pathak,et al.  Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis , 2004 .

[51]  Alida Bellosi,et al.  Oxidation of ZrB2-Based Ceramics in Dry Air , 2003 .

[52]  Antonio Mario Locci,et al.  A review on combustion synthesis of novel materials: recent experimental and modeling results , 2003 .

[53]  K. Hirota,et al.  Spark plasma sintering (SPS) of several intermetallic compounds prepared by self-propagating high-temperature synthesis (SHS) , 2003 .

[54]  K. Shim,et al.  Crystallographic orientation of ZrB2‐ZrC composites manufactured by the spark plasma sintering method , 2002, Journal of microscopy.

[55]  Alida Bellosi,et al.  Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride , 2002 .

[56]  Guo‐Jun Zhang,et al.  Reactive Hot Pressing of ZrB2–SiC Composites , 2004 .

[57]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .

[58]  Arvind Varma,et al.  Combustion Synthesis of Advanced Materials: Principles and Applications , 1998 .

[59]  K. Upadhya,et al.  Materials for ultrahigh temperature structural applications , 1997 .

[60]  Z. A. Munir,et al.  Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion , 1989 .

[61]  H. C. Graham,et al.  The High‐Temperature Oxidation Behavior of a HfB2 + 20 v / o SiC Composite , 1975 .