Weighted Chebyshev Distance Algorithms for Hyperspectral Target Detection and Classification Applications

Abstract. In this study, an efficient spectral similarity m ethod referred to as Weighted Chebyshev Distance (W CD) method is introduced for supervised classification of hyperspectral imagery (HSI) and target detection applications. The WCD is based on a simple spectral similarity ba sed decision rule using limited amount of reference data. The estimation of upper and lower spectral boundaries o f pectral signatures for all classes across spectr al bands is referred to as a vector tunnel (VT). To obtain the reference information, the training signatures are p ovided randomly from existing data for a known class. Afte r d termination of the parameters of the WCD algori thm with the training set, classification or detection proce dur s are accomplished at each pixel. The comparati ve performances of the algorithms are tested under var ious cases.

[1]  I. Erer,et al.  Unsupervised classification of hyperspectral images using an adaptive vector tunnel classifier , 2012, Remote Sensing.

[2]  Louis L. Scharf,et al.  Matched subspace detectors , 1994, IEEE Trans. Signal Process..

[3]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[4]  J. Campbell Introduction to remote sensing , 1987 .

[5]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..

[6]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[7]  O. Ersoy,et al.  Multispectral target detection by statistical methods , 2005, Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005. RAST 2005..

[8]  Isin Erer,et al.  Vector tunnel algorithm for hyperspectral target detection , 2014, Defense + Security Symposium.

[9]  N. Gökhan,et al.  BORDER FEATURE DETECTION AND ADAPTATION: A NEW ALGORITHM FOR CLASSIFICATION OF REMOTE SENSING IMAGES , 2007 .

[10]  Abel G. Silva-Filho,et al.  Hyperspectral images clustering on reconfigurable hardware using the k-means algorithm , 2003, 16th Symposium on Integrated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings..

[11]  M. N. Islam,et al.  Hyperspectral target detection using Gaussian filter and post-processing , 2008 .

[12]  Peter Bajorski Practical Evaluation of Max-Type Detectors for Hyperspectral Images , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  Peter Bajorski,et al.  Target Detection Under Misspecified Models in Hyperspectral Images , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  M. Hodgson Reducing the computational requirements of the minimum-distance classifier , 1988 .

[15]  John R. Schott,et al.  Comparison of basis-vector selection methods for target and background subspaces as applied to subpixel target detection , 2004, SPIE Defense + Commercial Sensing.

[16]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[17]  Nasser M. Nasrabadi,et al.  Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery , 2008, IEEE Signal Processing Letters.

[18]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[19]  P. Gong,et al.  Spectral Feature Extraction of Hyperspectral Images Using Wavelet Transform , 2006 .

[20]  J. Sweet,et al.  The spectral similarity scale and its application to the classification of hyperspectral remote sensing data , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.

[21]  Peng Gong,et al.  Dimension Reduction of Hyperspectral Images for Classification Applications , 2002, Ann. GIS.

[22]  Heesung Kwon,et al.  Kernel orthogonal subspace projection for hyperspectral signal classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Kun Tan,et al.  Wavelet SVM in Reproducing Kernel Hilbert Space for hyperspectral remote sensing image classification , 2010 .

[24]  R. Mersereau,et al.  Application of a two-stage algorithm for adaptive detection in hyperspectral imaging , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[25]  Okan K. Ersoy,et al.  Multidimensional Artificial Field Embedding With Spatial Sensitivity , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[26]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[27]  D. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications: a signal processing perspective , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.

[28]  Qu Wang,et al.  Nonlinear joint fractional Fourier transform correlation for target detection in hyperspectral image , 2012 .

[29]  Stefan A. Robila,et al.  Spectral Screened Orthogonal Subspace Projection for Target Detection in Hyperspectral Imagery , 2009 .

[30]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[31]  Louis L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1999, IEEE Trans. Signal Process..

[32]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[33]  J. A. Gualtieri Hyperspectral analysis, the support vector machine, and land and benthic habitats , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.

[34]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[35]  Dimitris Manolakis,et al.  Hyperspectral signal models and implications to material detection algorithms , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[36]  Isin Erer,et al.  Multi-scale vector tunnel classification algorithm for hyperspectral images , 2013, Defense, Security, and Sensing.

[37]  Pai-Hui Hsu,et al.  Feature extraction of hyperspectral images using wavelet and matching pursuit , 2007 .

[38]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[39]  Mikhail F. Kanevski,et al.  SVM-Based Boosting of Active Learning Strategies for Efficient Domain Adaptation , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  David A. Landgrebe,et al.  Hyperspectral image data analysis , 2002, IEEE Signal Process. Mag..

[41]  D. Sarala,et al.  Digital Image Processing - A Remote Sensing Perspective , 2014 .

[42]  Su May Hsu,et al.  Multisensor Fusion with Hyperspectral Imaging Data: Detection and Classification , 2003 .

[43]  Gary A. Shaw,et al.  Hyperspectral subpixel target detection using the linear mixing model , 2001, IEEE Trans. Geosci. Remote. Sens..