Quantifying spatial correlations of general quantum dynamics

Understanding the role of correlations in quantum systems is both a fundamental challenge as well as of high practical relevance for the control of multi-particle quantum systems. Whereas a lot of research has been devoted to study the various types of correlations that can be present in the states of quantum systems, in this work we introduce a general and rigorous method to quantify the amount of correlations in the dynamics of quantum systems. Using a resource-theoretical approach, we introduce a suitable quantifier and characterize the properties of correlated dynamics. Furthermore, we benchmark our method by applying it to the paradigmatic case of two atoms weakly coupled to the electromagnetic radiation field, and illustrate its potential use to detect and assess spatial noise correlations in quantum computing architectures.

[1]  A. Shabani Correlated errors can lead to better performance of quantum codes , 2008 .

[2]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[3]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[4]  J. Eckel,et al.  Quantum coherent biomolecular energy transfer with spatially correlated fluctuations , 2010, 1003.3857.

[5]  J. Gea-Banacloche,et al.  Quantum error correction against correlated noise , 2004 .

[6]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[7]  T. Müller,et al.  Direct observation of second-order atom tunnelling , 2007, Nature.

[8]  Bernhard H. Haak,et al.  Open Quantum Systems , 2019, Tutorials, Schools, and Workshops in the Mathematical Sciences.

[9]  John A Smolin,et al.  Entangling and disentangling power of unitary transformations are not equal. , 2009, Physical review letters.

[10]  John Preskill,et al.  Sufficient condition on noise correlations for scalable quantum computing , 2012, Quantum Inf. Comput..

[11]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[12]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[13]  F. Brandão,et al.  Entanglement theory and the second law of thermodynamics , 2008, 0810.2319.

[14]  Jan Jeske,et al.  Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit , 2014 .

[15]  K. B. Whaley,et al.  Environmental correlation effects on excitation energy transfer in photosynthetic light harvesting. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Li Li,et al.  Canonical form of master equations and characterization of non-Markovianity , 2010, 1009.0845.

[17]  K. Schulten,et al.  Quest for spatially correlated fluctuations in the FMO light-harvesting complex. , 2011, The journal of physical chemistry. B.

[18]  A. Nazir Correlation-dependent coherent to incoherent transitions in resonant energy transfer dynamics. , 2009, Physical review letters.

[19]  S. Mukamel,et al.  Exciton dynamics in chromophore aggregates with correlated environment fluctuations. , 2011, The Journal of chemical physics.

[20]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  Masoud Mohseni,et al.  Role of quantum coherence and environmental fluctuations in chromophoric energy transport. , 2008, The journal of physical chemistry. B.

[23]  Raymond Laflamme,et al.  Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.

[24]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[25]  Jan Jeske,et al.  Quantum metrology in the presence of spatially correlated noise: Restoring Heisenberg scaling , 2013, 1307.6301.

[26]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[27]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[28]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[29]  I. Lesanovsky,et al.  Steady-state properties of a driven atomic ensemble with nonlocal dissipation , 2013, 1308.3967.

[30]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[31]  H. Häffner,et al.  Robust entanglement , 2005 .

[32]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[33]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[34]  Klaus Schulten,et al.  The effect of correlated bath fluctuations on exciton transfer. , 2011, The Journal of chemical physics.

[35]  J. Cole,et al.  Derivation of Markovian master equations for spatially correlated decoherence , 2013, 1301.1381.

[36]  Rochus Klesse,et al.  Quantum error correction in spatially correlated quantum noise. , 2005, Physical review letters.

[37]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[38]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[39]  C. F. Roos,et al.  Simulating open quantum systems: from many-body interactions to stabilizer pumping , 2011, 1104.2507.

[40]  Susana F. Huelga,et al.  Open Quantum Systems: An Introduction , 2011, 1104.5242.

[41]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[42]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[43]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[44]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[45]  A. Harrow,et al.  Quantum dynamics as a physical resource , 2002, quant-ph/0208077.

[46]  Eduardo R Mucciolo,et al.  Surface code threshold in the presence of correlated errors. , 2012, Physical review letters.

[47]  Animesh Datta,et al.  Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of n , 2009, 0901.4454.

[48]  M. Mohseni,et al.  Role of Quantum Coherence in Chromophoric Energy Transport , 2008, 0806.4725.

[49]  S. Liberman,et al.  Superradiance and subradiance. I. Interatomic interference and symmetry properties in three-level systems , 1985 .

[50]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[51]  A. Olaya-Castro,et al.  Quantum State Tuning of Energy Transfer in a Correlated Environment , 2009, 0907.5183.

[52]  R. Silbey,et al.  Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy and spatial–temporal correlations , 2010, 1008.2236.

[53]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[54]  M. Paternostro,et al.  Geometrical characterization of non-Markovianity , 2013, 1302.6673.

[55]  R. Blatt,et al.  Quantum simulation of dynamical maps with trapped ions , 2012, Nature Physics.

[56]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[57]  F. Schmidt-Kaler,et al.  Ion strings for quantum gates , 1998 .

[58]  H. Baranger,et al.  Decoherence by correlated noise and quantum error correction. , 2005, Physical review letters.

[59]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[60]  S. Maniscalco,et al.  Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective , 2014, Scientific Reports.

[61]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[62]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[63]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[64]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[65]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[66]  K. B. Whaley,et al.  Decoherence-free subspaces for multiple-qubit errors. I. Characterization , 1999, quant-ph/9908064.

[67]  J. I. D. Vicente On nonlocality as a resource theory and nonlocality measures , 2014, 1401.6941.

[68]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[69]  Susana F Huelga,et al.  Bloch-Redfield equations for modeling light-harvesting complexes. , 2014, The Journal of chemical physics.

[70]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.