Enumeration of Rhombus Tilings of a Hexagon which Contain a Fixed Rhombus in the Centre
暂无分享,去创建一个
[1] Christian Krattenthaler,et al. The Number of Rhombus Tilings of a Symmetric Hexagon which Contain a Fixed Rhombus on the Symmetry Axis, II , 2000, Eur. J. Comb..
[2] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[3] Carlos Tomei,et al. The Problem of the Calissons , 1989 .
[4] R. W. Gosper. Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.
[5] J. Shaw. Combinatory Analysis , 1917, Nature.
[6] Christian Krattenthaler,et al. HYP and HYPQ Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q-binomial sums and basic hypergeometric series , 1993 .
[7] Christian Krattenthaler,et al. HYP and HYPQ , 1995, J. Symb. Comput..
[8] B. Lindström. On the Vector Representations of Induced Matroids , 1973 .
[9] Lucy Joan Slater,et al. Generalized hypergeometric functions , 1966 .
[10] Michael Larsen,et al. The Shape of a Typical Boxed Plane Partition , 1998, math/9801059.
[11] Mizan Rahman,et al. Basic Hypergeometric Series , 1990 .
[12] T. Koornwinder,et al. BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .
[13] Mihai Ciucu,et al. The Number of Centered Lozenge Tilings of a Symmetric Hexagon , 1999, J. Comb. Theory, Ser. A.
[14] G. Rw. Decision procedure for indefinite hypergeometric summation , 1978 .
[15] C. Krattenthaler. ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.
[16] Peter Paule,et al. A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..