Intrinsic and Extrinsic Neuromodulation of Olfactory Processing

Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a “memory” by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.

[1]  L. Tecott,et al.  Nervous system distribution of the serotonin 5-HT3 receptor mRNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Dacks,et al.  Serotonergic Modulation Differentially Targets Distinct Network Elements within the Antennal Lobe of Drosophila melanogaster , 2016, Scientific Reports.

[3]  P. Kloppenburg,et al.  Serotonin Enhances Central Olfactory Neuron Responses to Female Sex Pheromone in the Male Sphinx Moth Manduca sexta , 1999, The Journal of Neuroscience.

[4]  J. Hildebrand,et al.  Multitasking in the Olfactory System: Context-Dependent Responses to Odors Reveal Dual GABA-Regulated Coding Mechanisms in Single Olfactory Projection Neurons , 1998, The Journal of Neuroscience.

[5]  M. T. Shipley,et al.  Dopamine D2 receptor-mediated presynaptic inhibition of olfactory nerve terminals. , 2001, Journal of neurophysiology.

[6]  J. Hildebrand,et al.  GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth,Manduca sexta , 2004, Journal of Comparative Physiology A.

[7]  Christine Gall,et al.  Distribution of VIP- and NPY-like immunoreactivities in rat main olfactory bulb , 1986, Brain Research.

[8]  D. Fadool,et al.  Differential serotonergic modulation across the main and accessory olfactory bulbs , 2017, The Journal of physiology.

[9]  M. T. Shipley,et al.  Serotonin increases synaptic activity in olfactory bulb glomeruli. , 2016, Journal of neurophysiology.

[10]  Irina Sinakevitch,et al.  Octopamine‐like immunoreactivity in the honey bee and cockroach: Comparable organization in the brain and subesophageal ganglion , 2005, The Journal of comparative neurology.

[11]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[12]  J. Hildebrand,et al.  Local interneuron diversity in the primary olfactory center of the moth Manduca sexta , 2011, Journal of Comparative Physiology A.

[13]  Zoltan Nusser,et al.  Distinct Deep Short-Axon Cell Subtypes of the Main Olfactory Bulb Provide Novel Intrabulbar and Extrabulbar GABAergic Connections , 2008, The Journal of Neuroscience.

[14]  L. Vosshall Olfaction in Drosophila , 2000, Current Opinion in Neurobiology.

[15]  B. Strowbridge,et al.  Modulation of olfactory bulb network activity by serotonin: synchronous inhibition of mitral cells mediated by spatially localized GABAergic microcircuits , 2014, Learning & memory.

[16]  Kae Nakamura,et al.  Coding of Task Reward Value in the Dorsal Raphe Nucleus , 2010, The Journal of Neuroscience.

[17]  Shawn R. Olsen,et al.  Lateral presynaptic inhibition mediates gain control in an olfactory circuit , 2008, Nature.

[18]  Yuchio Yanagawa,et al.  Molecular Identity of Periglomerular and Short Axon Cells , 2010, The Journal of Neuroscience.

[19]  Shawn D Burton,et al.  Inhibitory circuits of the mammalian main olfactory bulb. , 2017, Journal of neurophysiology.

[20]  C. Linster,et al.  Role of centrifugal projections to the olfactory bulb in olfactory processing. , 2006, Learning & memory.

[21]  Thomas A Cleland,et al.  Neuromodulation of olfactory transformations , 2016, Current Opinion in Neurobiology.

[22]  Zev Balsen,et al.  Sensory Neuron Signaling to the Brain: Properties of Transmitter Release from Olfactory Nerve Terminals , 2004, The Journal of Neuroscience.

[23]  I. Kupfermann Feeding behavior in Aplysia: a simple system for the study of motivation. , 1974, Behavioral biology.

[24]  F. Bloom,et al.  ANALYSIS OF INDIVIDUAL RABBIT OLFACTORY BULB NEURON RESPONSES TO THE MICROELECTROPHORESIS OF ACETYLCHOLINE, NOREPINEPHRINE AND SEROTONIN SYNERGISTS AND ANTAGONISTS. , 1964, The Journal of pharmacology and experimental therapeutics.

[25]  Mark Stopfer,et al.  Insect olfactory coding and memory at multiple timescales , 2011, Current Opinion in Neurobiology.

[26]  Scott Waddell,et al.  Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila , 2015, Current Opinion in Neurobiology.

[27]  G. Shepherd,et al.  Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. , 1997, Annual review of neuroscience.

[28]  P. Gaspar,et al.  Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem , 2014, Brain Structure and Function.

[29]  J. Krushinski,et al.  [3H]LY334370, a novel radioligand for the 5-HT1F receptor. II. Autoradiographic localization in rat, guinea pig, monkey and human brain , 2005, Naunyn-Schmiedeberg's Archives of Pharmacology.

[30]  I Kupfermann,et al.  The role of a modulatory neuron in feeding and satiation in Aplysia: effects of lesioning of the serotonergic metacerebral cells , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  M. T. Shipley,et al.  Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors. , 2000, Journal of neurophysiology.

[32]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[33]  N. Yamamoto,et al.  Centrifugal innervation of the mammalian olfactory bulb , 2008, Anatomical science international.

[34]  M. Barbado,et al.  Heterogeneous targeting of centrifugal inputs to the glomerular layer of the main olfactory bulb , 2005, Journal of Chemical Neuroanatomy.

[35]  Ryohei Kanzaki,et al.  Serotonin modifies the sensitivity of the male silkmoth to pheromone , 2004, Journal of Experimental Biology.

[36]  Michael T Shipley,et al.  Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. , 2006, Seminars in cell & developmental biology.

[37]  Andrey Rzhetsky,et al.  A Spatial Map of Olfactory Receptor Expression in the Drosophila Antenna , 1999, Cell.

[38]  R. Bertram,et al.  Olfactory bulb monoamine concentrations vary with time of day , 2013, Neuroscience.

[39]  P. Kloppenburg,et al.  Serotonin modulation of moth central olfactory neurons. , 2008, Annual review of entomology.

[40]  Z. Mainen,et al.  Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. , 2009, Journal of neurophysiology.

[41]  J. Vincent,et al.  Dopamine depresses synaptic inputs into the olfactory bulb. , 1999, Journal of neurophysiology.

[42]  L. Cohen,et al.  Presynaptic afferent inhibition of lobster olfactory receptor cells: reduced action-potential propagation into axon terminals. , 1998, Journal of neurophysiology.

[43]  J. Hildebrand,et al.  Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta , 1993, Journal of Comparative Physiology A.

[44]  K. R. Weiss,et al.  Activity of an identified serotonergic neuron in free moving Aplysia correlates with behavioral arousal , 1982, Brain Research.

[45]  Functional integration of a serotonergic neuron in the Drosophila antennal lobe , 2016, eLife.

[46]  Joshua P. Martin,et al.  Olfactory modulation by dopamine in the context of aversive learning. , 2012, Journal of neurophysiology.

[47]  Matthias Landgraf,et al.  Metamorphosis of an identified serotonergic neuron in the Drosophila olfactory system , 2007, Neural Development.

[48]  Jing W. Wang,et al.  A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior , 2008, Neuron.

[49]  H. Hioki,et al.  Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb , 2015, The Journal of comparative neurology.

[50]  G. Silberberg,et al.  A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei , 2014, Neuron.

[51]  J. Hildebrand,et al.  Ramification pattern and ultrastructural characteristics of the serotonin‐immunoreactive neuron in the antennal lobe of the moth Manduca sexta: A laser scanning confocal and electron microscopic study , 1993, The Journal of comparative neurology.

[52]  G. Laurent,et al.  Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies , 1996, Science.

[53]  John R. Carlson,et al.  Coexpression of Two Functional Odor Receptors in One Neuron , 2005, Neuron.

[54]  J. Zgombick,et al.  [3H]LY334370, a novel radioligand for the 5-HT1F receptor. I. In vitro characterization of binding properties , 2005, Naunyn-Schmiedeberg's Archives of Pharmacology.

[55]  Troy Zars,et al.  Behavioral functions of the insect mushroom bodies , 2000, Current Opinion in Neurobiology.

[56]  D. Gehlert,et al.  Autoradiographic comparison of [125I]LSD-labeled 5-HT2A receptor distribution in rat and guinea pig brain , 1994, Neurochemistry International.

[57]  K. R. Weiss,et al.  Convergent Mechanisms Mediate Preparatory States and Repetition Priming in the Feeding Network of Aplysia , 2003, The Journal of Neuroscience.

[58]  Kristyn M. Lizbinski,et al.  Transmitter Co-Expression Reveals Key Organizational Principles of Local Interneuron Heterogeneity in the Olfactory System , 2017, bioRxiv.

[59]  R. Wegerhoff GABA and serotonin immunoreactivity during postembryonic brain development in the beetle Tenebrio molitor , 1999, Microscopy research and technique.

[60]  Jing W Wang,et al.  Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits , 2015, eLife.

[61]  Shawn R. Olsen,et al.  Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations , 2007, Nature Neuroscience.

[62]  R. Glennon,et al.  Autoradiographic characterization of (+-)-1-(2,5-dimethoxy-4-[125I] iodophenyl)-2-aminopropane ([125I]DOI) binding to 5-HT2 and 5-HT1c receptors in rat brain. , 1990, The Journal of pharmacology and experimental therapeutics.

[63]  P. Dayan,et al.  Serotonin's many meanings elude simple theories , 2015, eLife.

[64]  S. Haj-Dahmane,et al.  Serotonin neuron diversity in the dorsal raphe. , 2013, ACS chemical neuroscience.

[65]  J. McLean,et al.  Localization of 5‐HT2A receptor mRNA by in situ hybridization in the olfactory bulb of the postnatal rat , 1995, The Journal of comparative neurology.

[66]  P. Katz,et al.  Intrinsic neuromodulation in the Tritonia swim CPG: serotonin mediates both neuromodulation and neurotransmission by the dorsal swim interneurons. , 1995, Journal of neurophysiology.

[67]  P. Evans,et al.  A Characterization of the Manduca sexta Serotonin Receptors in the Context of Olfactory Neuromodulation , 2013, PloS one.

[68]  J. C. Kim,et al.  Multi-Scale Molecular Deconstruction of the Serotonin Neuron System , 2015, Neuron.

[69]  Minmin Luo,et al.  Learning and Stress Shape the Reward Response Patterns of Serotonin Neurons , 2017, The Journal of Neuroscience.

[70]  Jeremiah Y. Cohen,et al.  Serotonergic neurons signal reward and punishment on multiple timescales , 2015, eLife.

[71]  E. Deneris,et al.  Preservation of Essential Odor-Guided Behaviors and Odor-Based Reversal Learning after Targeting Adult Brain Serotonin Synthesis , 2016, eNeuro.

[72]  Kristyn M. Lizbinski,et al.  The anatomical basis for modulatory convergence in the antennal lobe of Manduca sexta , 2016, The Journal of comparative neurology.

[73]  Paul S. Katz,et al.  Intrinsic neuromodulation: altering neuronal circuits from within , 1996, Trends in Neurosciences.

[74]  Wei R Chen,et al.  Neural correlates of olfactory learning: Critical role of centrifugal neuromodulation. , 2010, Learning & memory.

[75]  Barry L. Jacobs,et al.  Raphe unit activity in freely moving cats: Correlation with level of behavioral arousal , 1979, Brain Research.

[76]  Minmin Luo,et al.  Dorsal Raphe Neurons Signal Reward through 5-HT and Glutamate , 2014, Neuron.

[77]  V. Murthy,et al.  Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels , 2015, Nature Neuroscience.

[78]  M. Shipley,et al.  Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  D. Sibley,et al.  Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. , 1993, The Journal of biological chemistry.

[80]  B. Hansson,et al.  Neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti , 2014, The Journal of comparative neurology.

[81]  D. Nelson,et al.  Molecular cloning and pharmacological characterization of the guinea pig 5-HT1E receptor. , 2004, European journal of pharmacology.

[82]  Andrew M Dacks,et al.  Phylogeny of a serotonin‐immunoreactive neuron in the primary olfactory center of the insect brain , 2006, The Journal of comparative neurology.

[83]  K. R. Weiss,et al.  Removal of Default State-Associated Inhibition during Repetition Priming Improves Response Articulation , 2012, The Journal of Neuroscience.

[84]  I. Salecker,et al.  Serotonin-immunoreactive neurons in the antennal lobes of the American cockroach Periplaneta americana: light- and electron-microscopic observations , 2004, Histochemistry.

[85]  M. Sassoè-Pognetto,et al.  Cellular and subcellular localization of γ-aminobutyric acidB receptors in the rat olfactory bulb , 1999, Neuroscience Letters.

[86]  J. Hildebrand,et al.  GABAergic Mechanisms That Shape the Temporal Response to Odors in Moth Olfactory Projection Neurons a , 1998, Annals of the New York Academy of Sciences.

[87]  K. R. Weiss,et al.  Peptidergic contribution to posttetanic potentiation at a central synapse of aplysia. , 2005, Journal of neurophysiology.

[88]  J. Hildebrand,et al.  Octopamine‐immunoreactive neurons in the brain and subesophageal ganglion of the hawkmoth Manduca sexta , 2005, The Journal of comparative neurology.

[89]  V. Murthy,et al.  Serotonergic modulation of odor input to the mammalian olfactory bulb , 2009, Nature Neuroscience.

[90]  M. T. Shipley,et al.  Evidence for GABAB-mediated inhibition of transmission from the olfactory nerve to mitral cells in the rat olfactory bulb , 1994, Brain Research Bulletin.

[91]  C. Harley,et al.  Increased beta adrenoceptor activation overcomes conditioned olfactory learning deficits induced by serotonin depletion. , 1997, Brain research. Developmental brain research.

[92]  J. Royet,et al.  5-hydroxytryptamine action in the rat olfactory bulb: In vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells , 2005, Neuroscience.

[93]  Minmin Luo,et al.  Do dorsal raphe 5-HT neurons encode “beneficialness”? , 2016, Neurobiology of Learning and Memory.

[94]  P. Kloppenburg,et al.  Colocalization of allatotropin and tachykinin‐related peptides with classical transmitters in physiologically distinct subtypes of olfactory local interneurons in the cockroach (Periplaneta americana) , 2015, The Journal of comparative neurology.

[95]  Terrence J. Sejnowski,et al.  Model of Cellular and Network Mechanisms for Odor-Evoked Temporal Patterning in the Locust Antennal Lobe , 2001, Neuron.

[96]  Aman Aggarwal,et al.  Sensory Neuron-Derived Eph Regulates Glomerular Arbors and Modulatory Function of a Central Serotonergic Neuron , 2013, PLoS genetics.

[97]  Qingchun Guo,et al.  Serotonin neurons in the dorsal raphe nucleus encode reward signals , 2016, Nature Communications.

[98]  John R Carlson,et al.  Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. , 2015, Trends in genetics : TIG.

[99]  P. Katz Intrinsic and extrinsic neuromodulation of motor circuits , 1995, Current Opinion in Neurobiology.

[100]  J. Hildebrand,et al.  A novel serotonin-immunoreactive neuron in the antennal lobe of the sphinx moth Manduca sexta persists throughout postembryonic life. , 1987, Journal of neurobiology.

[101]  C. Harley,et al.  Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. , 2003, Learning & memory.

[102]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[103]  R. Harris-Warrick,et al.  Modulation of neural networks for behavior. , 1991, Annual review of neuroscience.

[104]  G. Westbrook,et al.  Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb. , 2017, Journal of neurophysiology.

[105]  J. McLean,et al.  5-HT2 receptor involvement in conditioned olfactory learning in the neonate rat pup. , 1996, Behavioral neuroscience.

[106]  Thomas A. Cleland,et al.  Cholinergic modulation of sensory representations in the olfactory bulb , 2002, Neural Networks.

[107]  L. Cohen,et al.  Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo. , 2006, Journal of neurophysiology.

[108]  U. Schambra,et al.  Prenatal Expression of 5-HT1C and 5-HT2 Receptors in the Rat Central Nervous System , 1993, Experimental Neurology.

[109]  B. Jacobs,et al.  Activity of brain serotonergic neurons in the behaving animal. , 1991, Pharmacological reviews.

[110]  H. Iftikhar,et al.  The role of the Drosophila lateral horn in olfactory information processing and behavioral response. , 2017, Journal of insect physiology.

[111]  W. T. Nickell,et al.  Olfactory receptor neurons express D2 dopamine receptors , 1999, The Journal of comparative neurology.

[112]  Kae Nakamura,et al.  Appetitive and Aversive Information Coding in the Primate Dorsal Raphé Nucleus , 2015, The Journal of Neuroscience.

[113]  Shin Nagayama,et al.  Neuronal organization of olfactory bulb circuits , 2014, Front. Neural Circuits..

[114]  M. T. Shipley,et al.  Olfactory Bulb Short Axon Cell Release of GABA and Dopamine Produces a Temporally Biphasic Inhibition–Excitation Response in External Tufted Cells , 2013, The Journal of Neuroscience.

[115]  M. Giurfa,et al.  A Tyrosine-Hydroxylase Characterization of Dopaminergic Neurons in the Honey Bee Brain , 2017, Front. Syst. Neurosci..

[116]  Kae Nakamura,et al.  Reward-Dependent Modulation of Neuronal Activity in the Primate Dorsal Raphe Nucleus , 2008, The Journal of Neuroscience.

[117]  D. McAlpine,et al.  Gain control mechanisms in the auditory pathway , 2009, Current Opinion in Neurobiology.

[118]  W. Roelofs,et al.  Modulatory effects of octopamine and serotonin on male sensitivity and periodicity of response to sex pheromone in the cabbage looper moth, Trichoplusia ni , 1986 .

[119]  R. Kanzaki,et al.  Comprehensive morphological identification and GABA immunocytochemistry of antennal lobe local interneurons in Bombyx mori , 2008, The Journal of comparative neurology.

[120]  Matt Wachowiak,et al.  Odorant Representations Are Modulated by Intra- but Not Interglomerular Presynaptic Inhibition of Olfactory Sensory Neurons , 2005, Neuron.

[121]  N. Strausfeld,et al.  Comparison of octopamine‐like immunoreactivity in the brains of the fruit fly and blow fly , 2006, The Journal of comparative neurology.

[122]  M. T. Shipley,et al.  Inhibition [corrected] of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx. , 2005, Journal of neurophysiology.

[123]  J. McGann,et al.  Presynaptic inhibition of olfactory sensory neurons: new mechanisms and potential functions. , 2013, Chemical senses.

[124]  Andreas T. Schaefer,et al.  Divergent Innervation of the Olfactory Bulb by Distinct Raphe Nuclei , 2015, The Journal of comparative neurology.

[125]  Liqun Luo,et al.  Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons , 2014, Neuron.

[126]  J. Engel,et al.  In vivo microdialysis measures of extracellular serotonin in the rat hippocampus during sleep–wakefulness , 1999, Brain Research.

[127]  K. R. Weiss,et al.  Repetition Priming of Motoneuronal Activity in a Small Motor Network: Intercellular and Intracellular Signaling , 2010, The Journal of Neuroscience.

[128]  U. Homberg,et al.  Development of dopamine‐immunoreactive neurons associated with the antennal lobes of the honey bee, Apis mellifera , 1999, The Journal of comparative neurology.

[129]  S. Sachse,et al.  Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe. , 2010, Journal of neurophysiology.

[130]  P. Trombley,et al.  Dopaminergic modulation at the olfactory nerve synapse , 2000, Brain Research.

[131]  Wolf Huetteroth,et al.  Mas‐allatotropin in the developing antennal lobe of the sphinx moth Manduca sexta: Distribution, time course, developmental regulation, and colocalization with other neuropeptides , 2008, Developmental neurobiology.

[132]  Jeffrey A. Riffell,et al.  The neurobiology of insect olfaction: Sensory processing in a comparative context , 2011, Progress in Neurobiology.

[133]  P. Katz Beyond neurotransmission : neuromodulation and its importance for information processing , 1999 .

[134]  T. Kosaka,et al.  [Neuronal organization of the main olfactory bulb revisited]. , 2015, Fukuoka igaku zasshi = Hukuoka acta medica.

[135]  R. Ignell Monoamines and neuropeptides in antennal lobe interneurons of the desert locust, Schistocerca gregaria: an immunocytochemical study , 2001, Cell and Tissue Research.

[136]  M. Carlsson,et al.  Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits , 2010, The Journal of comparative neurology.

[137]  J. Beshel,et al.  The good, the bad, and the hungry: how the central brain codes odor valence to facilitate food approach in Drosophila , 2016, Current Opinion in Neurobiology.

[138]  K. Doya,et al.  Behavioral / Systems / Cognitive Activation of Dorsal Raphe Serotonin Neurons Underlies Waiting for Delayed Rewards , 2011 .

[139]  G. Kestler Serotonergic Modulation , 2016 .

[140]  T. Powell,et al.  The neuropil of the periglomerular region of the olfactory bulb. , 1971, Journal of cell science.

[141]  D. Wright,et al.  Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain , 1995, The Journal of comparative neurology.

[142]  M. Wachowiak,et al.  In Vivo Modulation of Sensory Input to the Olfactory Bulb by Tonic and Activity-Dependent Presynaptic Inhibition of Receptor Neurons , 2008, The Journal of Neuroscience.

[143]  R. Sullivan,et al.  Serotonergic influence on olfactory learning in the neonate rat. , 1993, Behavioral and neural biology.

[144]  U. Homberg,et al.  Distribution of neuropeptides in the primary olfactory center of the heliothine moth Heliothis virescens , 2006, Cell and Tissue Research.

[145]  M. T. Shipley,et al.  Centre–surround inhibition among olfactory bulb glomeruli , 2003, Nature.

[146]  B. Ache,et al.  Olfaction: Diverse Species, Conserved Principles , 2005, Neuron.

[147]  K. Doya,et al.  Activation of the central serotonergic system in response to delayed but not omitted rewards , 2011, The European journal of neuroscience.

[148]  Wei R. Chen,et al.  The olfactory granule cell: From classical enigma to central role in olfactory processing , 2007, Brain Research Reviews.

[149]  P. Lledo,et al.  Centrifugal Drive onto Local Inhibitory Interneurons of the Olfactory Bulb , 2009, Annals of the New York Academy of Sciences.

[150]  M. Mizunami,et al.  Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana , 2016, PloS one.

[151]  Andrew M Dacks,et al.  Serotonin Modulates Olfactory Processing in the Antennal Lobe of Drosophila , 2009, Journal of neurogenetics.

[152]  I Kupfermann,et al.  Modulatory actions of neurotransmitters. , 1979, Annual review of neuroscience.

[153]  Y. Saalmann,et al.  Gain control in the visual thalamus during perception and cognition , 2009, Current Opinion in Neurobiology.

[154]  Jing W. Wang Presynaptic modulation of early olfactory processing in Drosophila , 2012, Developmental neurobiology.

[155]  M. Won,et al.  Serotonergic neurons are present and innervate blood vessels in the olfactory bulb of the laboratory shrew, Suncus murinus , 1998, Neuroscience Letters.

[156]  L. Luo,et al.  Diversity and Wiring Variability of Olfactory Local Interneurons in the Drosophila Antennal Lobe , 2010, Nature Neuroscience.

[157]  Thomas A Cleland,et al.  Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats , 2006, The European journal of neuroscience.

[158]  Hassana K. Oyibo,et al.  An Interglomerular Circuit Gates Glomerular Output and Implements Gain Control in the Mouse Olfactory Bulb , 2015, Neuron.

[159]  Jing W. Wang,et al.  Presynaptic Facilitation by Neuropeptide Signaling Mediates Odor-Driven Food Search , 2011, Cell.

[160]  Kae Nakamura The role of the dorsal raphé nucleus in reward-seeking behavior , 2013, Front. Integr. Neurosci..

[161]  J. Hildebrand,et al.  Modulation of olfactory information processing in the antennal lobe of Manduca sexta by serotonin. , 2008, Journal of neurophysiology.

[162]  C. Gall,et al.  Distribution of cholecystokinin‐like immunoreactivity in the rat main olfactory bulb , 1985, The Journal of comparative neurology.

[163]  Mark A. Frye,et al.  Drosophila Tracks Carbon Dioxide in Flight , 2013, Current Biology.

[164]  K. R. Weiss,et al.  Intrinsic and extrinsic modulation of a single central pattern generating circuit. , 2000, Journal of neurophysiology.

[165]  M. T. Shipley,et al.  Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei , 2016, The Journal of Neuroscience.

[166]  M. T. Shipley,et al.  Serotonin modulates the population activity profile of olfactory bulb external tufted cells. , 2012, Journal of neurophysiology.

[167]  J. Hildebrand,et al.  Modulatory effects of 5-hydroxytryptamine on voltage-activated currents in cultured antennal lobe neurones of the sphinx moth Manduca sexta. , 1995, The Journal of experimental biology.

[168]  Adam C. Puche,et al.  Inhibition of Olfactory Receptor Neuron Input to Olfactory Bulb Glomeruli Mediated by Suppression of Presynaptic Calcium Influx , 2005 .

[169]  M. Hammer,et al.  Serotonin-immunoreactive neurons in the antennal lobes and suboesophageal ganglion of the honeybee , 2004, Cell and Tissue Research.

[170]  J. Hildebrand,et al.  Distribution of FMRFamide-like immunoreactivity in the brain and suboesophageal ganglion of the sphinx mothManduca sexta and colocalization with SCPB-, BPP-, and GABA-like immunoreactivity , 1990, Cell and Tissue Research.

[171]  K. R. Weiss,et al.  Activity-dependent peptidergic modulation of the plateau-generating neuron B64 in the feeding network of Aplysia. , 2007, Journal of neurophysiology.

[172]  C. Harley,et al.  Serotonin plays a permissive role in conditioned olfactory learning induced by norepinephrine in the neonate rat. , 1998, Behavioral neuroscience.

[173]  J. Hildebrand,et al.  Serotonin-induced changes in the excitability of cultured antennal-lobe neurons of the sphinx moth Manduca sexta , 2004, Journal of Comparative Physiology A.

[174]  Claire E. J. Cheetham,et al.  Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites , 2017, The Journal of Neuroscience.

[175]  M Ennis,et al.  Functional organization of olfactory system. , 1996, Journal of neurobiology.

[176]  R. Hen,et al.  Putative 5‐ht5 Receptors: Localization in the Mouse CNS and Lack of Effect in the Inhibition of Dural Protein Extravasation , 1998, Annals of the New York Academy of Sciences.

[177]  L. Kaczmarek,et al.  Neuromodulation : the biochemical control of neuronal excitability , 1987 .

[178]  Jing W. Wang,et al.  Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila , 2009, Proceedings of the National Academy of Sciences.

[179]  L. Cohen,et al.  Presynaptic Inhibition of Primary Olfactory Afferents Mediated by Different Mechanisms in Lobster and Turtle , 1999, The Journal of Neuroscience.

[180]  Rachel I. Wilson Early olfactory processing in Drosophila: mechanisms and principles. , 2013, Annual review of neuroscience.

[181]  Q. Gaudry,et al.  Identified Serotonergic Modulatory Neurons Have Heterogeneous Synaptic Connectivity within the Olfactory System of Drosophila , 2017, The Journal of Neuroscience.

[182]  H. Scholz,et al.  A Single Pair of Serotonergic Neurons Counteracts Serotonergic Inhibition of Ethanol Attraction in Drosophila , 2016, PloS one.

[183]  Hong Lei,et al.  Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons , 2002, Nature Neuroscience.