Nonparanormal Belief Propagation (NPNBP)

The empirical success of the belief propagation approximate inference algorithm has inspired numerous theoretical and algorithmic advances. Yet, for continuous non-Gaussian domains performing belief propagation remains a challenging task: recent innovations such as nonparametric or kernel belief propagation, while useful, come with a substantial computational cost and offer little theoretical guarantees, even for tree structured models. In this work we present Nonparanormal BP for performing efficient inference on distributions parameterized by a Gaussian copulas network and any univariate marginals. For tree structured networks, our approach is guaranteed to be exact for this powerful class of non-Gaussian models. Importantly, the method is as efficient as standard Gaussian BP, and its convergence properties do not depend on the complexity of the univariate marginals, even when a nonparametric representation is used.

[1]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[2]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[3]  Hilbert J. Kappen,et al.  Sufficient Conditions for Convergence of Loopy Belief Propagation , 2005, UAI.

[4]  D. Koller,et al.  Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Sergey Kirshner,et al.  Learning with Tree-Averaged Densities and Distributions , 2007, NIPS.

[6]  Tommi S. Jaakkola,et al.  Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.

[7]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[8]  William T. Freeman,et al.  Nonparametric belief propagation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[9]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[10]  David A. McAllester,et al.  Particle Belief Propagation , 2009, AISTATS.

[11]  Tom Heskes,et al.  On the Uniqueness of Loopy Belief Propagation Fixed Points , 2004, Neural Computation.

[12]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[13]  D. Kurowicka,et al.  Distribution - Free Continuous Bayesian Belief Nets , 2004 .

[14]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[15]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[16]  Benjamin Van Roy,et al.  An analysis of belief propagation on the turbo decoding graph with Gaussian densities , 2001, IEEE Trans. Inf. Theory.

[17]  Danny Bickson,et al.  Gaussian Belief Propagation: Theory and Aplication , 2008, 0811.2518.

[18]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[19]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[20]  Gal Elidan,et al.  Copula Bayesian Networks , 2010, NIPS.

[21]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[22]  Tom Heskes,et al.  Fractional Belief Propagation , 2002, NIPS.

[23]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[24]  Le Song,et al.  Kernel Belief Propagation , 2011, AISTATS.

[25]  William T. Freeman,et al.  Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology , 1999, Neural Computation.

[26]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[27]  Larry A. Wasserman,et al.  The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..

[28]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[29]  Vijay P. Singh,et al.  Trivariate Flood Frequency Analysis Using the Gumbel–Hougaard Copula , 2007 .

[30]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[31]  Dmitry M. Malioutov,et al.  Walk-Sums and Belief Propagation in Gaussian Graphical Models , 2006, J. Mach. Learn. Res..

[32]  Andrew Gordon Wilson,et al.  Copula Processes , 2010, NIPS.

[33]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[34]  R. Nelsen An Introduction to Copulas , 1998 .

[35]  Paulo Cortez,et al.  Modeling wine preferences by data mining from physicochemical properties , 2009, Decis. Support Syst..