A trio of metal-rich dust and gas discs found orbiting candidate white dwarfs with K-band excess

This paper reports follow-up photometric and spectroscopic observations, including warm Spitzer IRAC photometry of seven white dwarfs from the SDSS with apparent excess flux in UKIDSS K-band observations. Six of the science targets were selected from 16785 DA star candidates identified either spectroscopically or photometrically within SDSS DR7, spatially cross-correlated with HK detections in UKIDSS DR8. Thus, the selection criteria are completely independent of stellar mass, effective temperature above 8000K and the presence (or absence) of atmospheric metals. The infrared fluxes of one target are compatible with a spatially unresolved late M or early L-type companion, while three stars exhibit excess emissions consistent with warm circumstellar dust. These latter targets have spectral energy distributions similar to known dusty white dwarfs with high fractional infrared luminosities (thus the K-band excesses). Optical spectroscopy reveals the stars with disc-like excesses are polluted with heavy elements, denoting the ongoing accretion of circumstellar material. One of the discs exhibits a gaseous component - the fourth reported to date - and orbits a relatively cool star, indicating the gas is produced via collisions as opposed to sublimation, supporting the picture of a recent event. The resulting statistics yield a lower limit of 0.8 per cent for the fraction dust discs at DA-type white dwarfs with cooling ages less than 1Gyr. Two overall results are noteworthy: (i) all stars whose excess infrared emission is consistent with dust are metal rich and (ii) no stars warmer than 25000K are found to have this type of excess, despite sufficient sensitivity. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

[1]  J. Farihi,et al.  Externally Polluted White Dwarfs with Dust Disks , 2007, 0704.1170.

[2]  R. G. Probst An infrared search for very low mass stars: JHK photometry and results for composite systems , 1983 .

[3]  J. Farihi,et al.  SIX WHITE DWARFS WITH CIRCUMSTELLAR SILICATES , 2008, 0811.1740.

[4]  John H. Debes,et al.  Are There Unstable Planetary Systems around White Dwarfs , 2002 .

[5]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[6]  D. Leisawitz,et al.  THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG , 2011, 1110.6162.

[7]  M. Wyatt,et al.  Post-main-sequence evolution of A star debris discs , 2010, 1007.4517.

[8]  B. Zuckerman,et al.  Companions to white dwarfs : very low-mass stars and the brown dwarf candidate GD 165B , 1992 .

[9]  G. Lodato,et al.  Memorie della Società Astronomica Italiana , 2005 .

[10]  Mukremin Kilic,et al.  Debris Disks around White Dwarfs: The DAZ Connection , 2006, astro-ph/0603774.

[11]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[12]  Ivan Hubeny,et al.  Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method , 1995 .

[13]  J. Kirkpatrick,et al.  Low Mass Companions to Nearby Stars: Spectral Classification and its Relation to the Stellar/Substellar Break , 1994 .

[14]  D. A. Golimowski,et al.  Preliminary Parallaxes of 40 L and T Dwarfs from the US Naval Observatory Infrared Astrometry Program , 2004 .

[15]  M. Tamura,et al.  MID-INFRARED PHOTOMETRY OF COLD BROWN DWARFS: DIVERSITY IN AGE, MASS, AND METALLICITY , 2010, 1001.0762.

[16]  J. Farihi,et al.  Low-Luminosity Companions to White Dwarfs , 2005 .

[17]  Filippo Maria Zerbi,et al.  X-shooter UV- to K-band intermediate-resolution high-efficiency spectrograph for the VLT: status report at the final design review , 2006, SPIE Astronomical Telescopes + Instrumentation.

[18]  Ben Zuckerman,et al.  Metal Lines in DA White Dwarfs , 2003 .

[19]  J. Farihi IRTF observations of white dwarfs with possible near-infrared excess , 2009, 0906.3292.

[20]  T. Marsh,et al.  A Gaseous Metal Disk Around a White Dwarf , 2006, Science.

[21]  Boris T. Gänsicke,et al.  DA white dwarfs in Sloan Digital Sky Survey Data Release 7 and a search for infrared excess emission , 2011 .

[22]  P. Bergeron,et al.  The Formation Rate and Mass and Luminosity Functions of DA White Dwarfs from the Palomar Green Survey , 2004, astro-ph/0406657.

[23]  Pierre Bergeron,et al.  Calibration of Synthetic Photometry Using DA White Dwarfs , 2005 .

[24]  R. Rafikov Runaway accretion of metals from compact discs of debris on to white dwarfs , 2011, 1102.4343.

[25]  Paul S. Smith,et al.  Hot DB White Dwarfs from the Sloan Digital Sky Survey , 2006, astro-ph/0606702.

[26]  UCSD,et al.  ECHOES OF A DECAYING PLANETARY SYSTEM: THE GASEOUS AND DUSTY DISKS SURROUNDING THREE WHITE DWARFS , 2010, 1007.2023.

[27]  University of Leicester,et al.  ACCRETION OF A TERRESTRIAL-LIKE MINOR PLANET BY A WHITE DWARF , 2011, 1102.0311.

[28]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[29]  James Liebert,et al.  Spitzer IRAC Photometry of M, L, and T Dwarfs , 2006, astro-ph/0606432.

[30]  R. Probst,et al.  The luminosity function of very low mass stars. , 1982 .

[31]  Pierre Brassard,et al.  The Potential of White Dwarf Cosmochronology , 2001 .

[32]  D. Kaplan,et al.  A debris disk around an isolated young neutron star , 2006, Nature.

[33]  C. Tappert,et al.  A DUSTY COMPONENT TO THE GASEOUS DEBRIS DISK AROUND THE WHITE DWARF SDSS J1228+1040 , 2009, 0902.4044.

[34]  I. Hubeny,et al.  Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs , 1995 .

[35]  B. Zuckerman,et al.  INFRARED SIGNATURES OF DISRUPTED MINOR PLANETS AT WHITE DWARFS , 2009, 0901.0973.

[36]  A. A. Henden,et al.  Astrometry and photometry for cool dwarfs and brown dwarfs , 2002 .

[37]  B. Davidsson,et al.  Tidal Splitting and Rotational Breakup of Solid Spheres , 1999 .

[38]  Norbert Christlieb,et al.  Metal traces in white dwarfs of the SPY (ESO Supernova Ia Progenitor Survey) sample , 2005 .

[39]  Mary Barreto,et al.  LIRIS: a long-slit intermediate-resolution infrared spectrograph for the WHT , 1998, Astronomical Telescopes and Instrumentation.

[40]  Edward M. Sion,et al.  A Catalog of Spectroscopically Identified White Dwarfs , 1987 .

[41]  F. Mannucci,et al.  Northern JHK Standard Stars for Array Detectors , 1998, astro-ph/9803153.

[42]  M. Burleigh,et al.  White dwarfs in the UKIRT Infrared Deep Sky Survey Large Area Survey: the substellar companion fraction , 2011, 1106.5893.

[43]  S. Vennes,et al.  Pressure shifts and abundance gradients in the atmosphere of the DAZ white dwarf GALEX J193156.8+011745 , 2011, 1101.2113.

[44]  M. A. Barstow,et al.  Rocky planetesimals as the origin of metals in DZ stars , 2010, 1001.5025.

[45]  M. R. Schreiber,et al.  Post-common-envelope binaries from SDSS – I. 101 white dwarf main-sequence binaries with multiple Sloan Digital Sky Survey spectroscopy , 2007, 0707.4107.

[46]  J. Southworth,et al.  SDSS J104341.53+085558.2: a second white dwarf with a gaseous debris disc , 2007, 0705.0447.

[47]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[48]  Marc J. Kuchner,et al.  The New Class of Dusty DAZ White Dwarfs , 2007, astro-ph/0703473.

[49]  M. Jura A Tidally Disrupted Asteroid around the White Dwarf G29-38 , 2003 .

[50]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[51]  T. Marsh THE EXTRACTION OF HIGHLY DISTORTED SPECTRA , 1989 .

[52]  John T. Rayner,et al.  An Infrared Spectroscopic Sequence of M, L, and T Dwarfs , 2004, astro-ph/0412313.

[53]  Marc J. Kuchner,et al.  A Spitzer White Dwarf Infrared Survey , 2006, astro-ph/0611588.

[54]  B. Zuckerman,et al.  Spitzer IRAC Observations of White Dwarfs. I. Warm Dust at Metal-Rich Degenerates , 2007, 0710.0907.

[55]  J. Farihi,et al.  Spitzer IRAC Observations of White Dwarfs. II. Massive Planetary and Cold Brown Dwarf Companions to Young and Old Degenerates , 2008 .

[56]  Amy Bonsor,et al.  Dynamical effects of stellar mass-loss on a Kuiper-like belt , 2011, 1102.3185.

[57]  J. Farihi,et al.  STRENGTHENING THE CASE FOR ASTEROIDAL ACCRETION: EVIDENCE FOR SUBTLE AND DIVERSE DISKS AT WHITE DWARFS , 2010, 1003.2627.