A partition of unity approach to adaptivity and limiting in continuous finite element methods

[1]  Igor Savostianov,et al.  Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws , 2013, J. Sci. Comput..

[2]  Gabriel R. Barrenechea,et al.  An algebraic flux correction scheme satisfying the discrete maximum principle and linearity preservation on general meshes , 2017 .

[3]  Dmitri Kuzmin,et al.  The Reference Solution Approach to Hp-Adaptivity in Finite Element Flux-Corrected Transport Algorithms , 2013, LSSC.

[4]  Dmitri Kuzmin,et al.  A parameter-free smoothness indicator for high-resolution finite element schemes , 2013 .

[5]  Ivo Dolezel,et al.  Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..

[6]  Jean-Luc Guermond,et al.  Invariant Domains and Second-Order Continuous Finite Element Approximation for Scalar Conservation Equations , 2017, SIAM J. Numer. Anal..

[7]  Tim N. T. Goodman Further variation diminishing properties of Bernstein polynomials on triangles , 1987 .

[8]  James D. Baeder,et al.  Concepts and Application of Time-Limiters to High Resolution Schemes , 2003, J. Sci. Comput..

[9]  Dmitri Kuzmin,et al.  An $$hp$$-adaptive flux-corrected transport algorithm for continuous finite elements , 2012, Computing.

[10]  Gabriel R. Barrenechea,et al.  Analysis of Algebraic Flux Correction Schemes , 2015, SIAM J. Numer. Anal..

[11]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[12]  Alessandro Russo,et al.  On the choice of a stabilizing subgrid for convection?diffusion problems , 2005 .

[13]  Santiago Badia,et al.  Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization , 2016, ArXiv.

[14]  Jean-Luc Guermond,et al.  A correction technique for the dispersive effects of mass lumping for transport problems , 2013 .

[15]  Daniil Svyatskiy,et al.  A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..

[16]  P. Knabner,et al.  Numerical Methods for Elliptic and Parabolic Partial Differential Equations , 2003, Texts in Applied Mathematics.

[17]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[18]  Marsha J. Berger,et al.  An Explicit Implicit Scheme for Cut Cells in Embedded Boundary Meshes , 2015, J. Sci. Comput..

[19]  Robert C. Kirby,et al.  Fast simplicial finite element algorithms using Bernstein polynomials , 2011, Numerische Mathematik.

[20]  C Thompson,et al.  Applied CFD techniques: An introduction based on finite element methods , 2002 .

[21]  Gabriel R. Barrenechea,et al.  Edge-based nonlinear diffusion for finite element approximations of convection–diffusion equations and its relation to algebraic flux-correction schemes , 2015, Numerische Mathematik.

[22]  Colin B. Macdonald,et al.  Spatially Partitioned Embedded Runge-Kutta Methods , 2013, SIAM J. Numer. Anal..

[23]  Wolfgang Bangerth,et al.  Data structures and requirements for hp finite element software , 2009, TOMS.

[24]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[25]  Cornelis Vuik,et al.  A local theta scheme for advection problems with strongly varying meshes and velocity profiles , 2008 .

[26]  Jeffrey W. Banks,et al.  A stable and accurate partitioned algorithm for conjugate heat transfer , 2017, J. Comput. Phys..

[27]  Hans D. Mittelmann,et al.  Some remarks on the discrete maximum-principle for finite elements of higher order , 1981, Computing.

[28]  T. Brunner PRESERVING POSITIVITY OF SOLUTIONS TO THE DIFFUSION EQUATION FOR HIGHER-ORDER FINITE ELEMENTS IN UNDER RESOLVED REGIONS , 2015 .

[29]  R. Abgrall,et al.  High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices , 2017, J. Sci. Comput..

[30]  John N. Shadid,et al.  Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements , 2017, J. Comput. Phys..

[31]  Mark Ainsworth,et al.  Bernstein-Bézier Finite Elements of Arbitrary Order and Optimal Assembly Procedures , 2011, SIAM J. Sci. Comput..