Theoretical investigations on the solvation process

A model to facilitate the computation of the most stable conformer of associated M · H2O (M being a polar molecule) which depends upon the electrostatic interaction energy between the two associated molecules is proposed and tested. SCF electrostatic potentials for the M molecule and a suitable point charge distribution for H2O were employed in the model computations. Energies predicted by the model are found to be in good agreement with those resulting from an ab initio minimal STO basis SCF treatment of some conformations of the H2O dimer.ZusammenfassungEin Modell zur Durchführung der Berechnung des stabilsten Konformeren eines Assoziationskomplexes M · H2O, wobei M ein polares Molekül ist, wird vorgeschlagen und untersucht. Es basiert auf der elektrostatischen Wechselwirkung zwischen beiden Partnern, und zwar wird für das Molekül M der elektrostatische Anteil seines SCF-Potentials und für H2O eine angemessene Punktladungsverteilung zugrunde gelegt. Die resultierenden Energien sind in guter Übereinstimmung mit denen, die sich bei einer ab initio Rechnung mit minimaler STO Basis ergeben.

[1]  G. Diercksen SCF MO LCGO studies on hydrogen bondng. The water dimer , 1969 .

[2]  K. Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds: Dimeric H2O with the Slater Minimal Basis Set , 1970 .

[3]  P. Kollman,et al.  Theory of the strong hydrogen bond. Ab initio calculations on HF2- and H5O2+1a , 1970 .

[4]  M. Arshadi,et al.  Solvation of the hydrogen ion by water molecules in the gas phase. Heats and entropies of solvation of individual reactions. H+(H2O)n-1 + H2O .fwdarw. H+(H2O)n , 1967 .

[5]  W. Schneider Properties of the Hydrogen Bond. The Role of Lone Pair Electrons , 1955 .

[6]  Jacopo Tomasi,et al.  Molecular SCF Calculations for the Ground State of Some Three‐Membered Ring Molecules: (CH2)3, (CH2)2NH, (CH2)2NH2+, (CH2)2O, (CH2)2S, (CH)2CH2, and N2CH2 , 1970 .

[7]  J. S. Rowlinson,et al.  The lattice energy of ice and the second virial coefficient of water vapour , 1951 .

[8]  Sunney I. Chan,et al.  Approximate Hartree–Fock Wavefunctions, One‐Electron Properties, and Electronic Structure of the Water Molecule , 1968 .

[9]  J. Pople,et al.  Intermolecular energies of small water polymers , 1969 .

[10]  J. V. Iribarne,et al.  Electrostatic energies in ice and the formation of defects , 1962 .

[11]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[12]  P. Kollman,et al.  Theory of the Hydrogen Bond: Electronic Structure and Properties of the Water Dimer , 1969 .

[13]  K. Morokuma,et al.  Molecular‐Orbital Studies of Hydrogen Bonds. An Ab Initio Calculation for Dimeric H2O , 1968 .

[14]  E. S. Campbell Hydrogen Bonding and the Interactions of Water Molecules , 1952 .

[15]  F. Stillinger,et al.  Hydrogen-bond energy nonadditivity in water☆ , 1970 .

[16]  M. Newton,et al.  Ab initio studies on the structures and energetics of inner- and outer-shell hydrates of the proton and the hydroxide ion , 1971 .

[17]  J. Pople,et al.  Molecular association in liquids II. A theory of the structure of water , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  C. A. Coulson,et al.  THE HYDROGEN BOND: A review of the present interpretations and an introduction to the theoretical papers presented at the Congress , 1959 .

[19]  M. Magat Recherches sur le spectre Raman et la constitution de l'eau liquide , 1936 .