Colloidal crystal assembly on topologically patterned templates.

A variety of methods have been successfully used to produce crystals of colloidal particles made of polymeric (or silica) microspheres. Achieving highly accurate growth and control of the packing symmetry, packing efficiency and packing quality of these crystals is of paramount importance for many applications, for example in photonics. If colloidal crystals are formed in self-assembly processes, it is usually the most densely packed (111) set of planes that terminates the crystal-air interface. However, often exposure of (given) different packing facets is required at the crystal surface. In addition, there is ( in photonics) need for crystals exhibiting lower than the tightest packing, and possessing also lower degrees of packing symmetry. These requirements demand development of various engineering approaches for controlled particle assembly in regular structures. The synthesis of polymer colloidal particles with different sizes, shapes and surface charge density is first briefly outlined. The various interactions and forces that control growth for a broad range of colloidal crystals are subsequently discussed. In the main section of this review we give an account of various template-assisted, graphoepitaxial assembly approaches to produce colloidal crystals with tailored packing structures and controlled crystal orientation with respect to the topologically patterned substrates used to direct the assembly process. In the outlook we also describe various selected emerging approaches, which have the potential to produce crystals with low degree of packing symmetries, for example using direct one-to-one colloidal particle assembly.

[1]  L. Biró,et al.  Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  George M. Whitesides,et al.  Microfabrication through Electrostatic Self-Assembly , 1997 .

[3]  Paul Rochon,et al.  Self-assembly of colloidal spheres on patterned substrates , 2001 .

[4]  Stefan Enoch,et al.  Structural Colors in Nature and Butterfly-Wing Modeling , 2003 .

[5]  L. E. Scriven,et al.  Opaline Photonic Crystals: How Does Self‐Assembly Work? , 2004 .

[6]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[7]  J. W. Goodwin,et al.  Studies on the preparation and characterization of monodisperse polystyrene latices V.: The preparation of cationic latices , 1979 .

[8]  Arjun G. Yodh,et al.  Template-directed convective assembly of three-dimensional face-centered-cubic colloidal crystals , 2002 .

[9]  Bartlett,et al.  Structure of crystals of hard colloidal spheres. , 1989, Physical review letters.

[10]  Toward a Tetravalent Chemistry of Colloids , 2002, cond-mat/0206552.

[11]  Geoffrey A. Ozin,et al.  Opal Circuits of Light—Planarized Microphotonic Crystal Chips , 2002 .

[12]  Prasad,et al.  Entropically driven colloidal crystallization on patterned surfaces , 2000, Physical review letters.

[13]  George H. Watson,et al.  PHOTONIC BAND STRUCTURE OF BCC COLLOIDAL CRYSTALS , 1997 .

[14]  Geoffrey A. Ozin,et al.  The Race for the Photonic Chip: Colloidal Crystal Assembly in Silicon Wafers , 2001 .

[15]  A. Blaaderen,et al.  A colloidal model system with an interaction tunable from hard sphere to soft and dipolar , 2003, Nature.

[16]  Abraham M. Lenhoff,et al.  Colloidal crystals as templates for porous materials , 2000 .

[17]  Michael J McFarland,et al.  Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. , 2004, Journal of the American Chemical Society.

[18]  E. Kumacheva,et al.  Multidye Nanostructured Material for Optical Data Storage and Security Labeling , 2004 .

[19]  Cefe López,et al.  Materials Aspects of Photonic Crystals , 2003 .

[20]  G. Vancso,et al.  Synthesis, characterization and gold loading of polystyrene-poly(pyridyl methacrylate) core-shell latex systems , 2004 .

[21]  R. Ruel,et al.  Template-directed colloidal crystallization , 1997, Nature.

[22]  S. Shim,et al.  Size control of polystyrene beads by multistage seeded emulsion polymerization , 1999 .

[23]  O. Park,et al.  Thickness Control of Colloidal Crystals with a Substrate Dipped at a Tilted Angle into a Colloidal Suspension , 2003 .

[24]  Vlasov,et al.  Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  G. Vancso,et al.  Symmetry Control of Polymer Colloidal Monolayers and Crystals by Electrophoretic Deposition on Patterned Surfaces , 2005 .

[26]  A. Gast,et al.  The experimental phase diagram of charged colloidal suspensions , 1989 .

[27]  Harry A. Atwater,et al.  Silicon-on-insulator by graphoepitaxy and zone-melting recrystallization of patterned films , 1983 .

[28]  Zhengdong Cheng,et al.  Controlled growth of hard-sphere colloidal crystals , 1999, Nature.

[29]  C. López,et al.  Nanorobotic Manipulation of Microspheres for On‐Chip Diamond Architectures , 2002 .

[30]  A. Keller,et al.  Ellipsoidal polymer particles with predesigned axial ratio , 1989 .

[31]  H. Lekkerkerker,et al.  Preparation of monodisperse, fluorescent PMMA-latex colloids by dispersion polymerization. , 2002, Journal of colloid and interface science.

[32]  Yulin Deng,et al.  Synthesis of polystyrene-based cationic copolymers and their colloidal properties in water , 1999 .

[33]  Helmuth Möhwald,et al.  Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin‐Coating , 2004 .

[34]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[35]  Photonic band gaps of three-dimensional face-centred cubic lattices , 1998, physics/9807057.

[36]  Mathieu Allard,et al.  In situ study of colloid crystallization in constrained geometry. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[37]  Younan Xia,et al.  Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures , 1999 .

[38]  Alfons van Blaaderen,et al.  Layer-by-Layer Growth of Binary Colloidal Crystals , 2002, Science.

[39]  Evert Jan Meijer,et al.  NOVEL PROCEDURE TO DETERMINE COEXISTENCE LINES BY COMPUTER SIMULATION. APPLICATION TO HARD-CORE YUKAWA MODEL FOR CHARGE-STABILIZED COLLOIDS , 1997 .

[40]  D. A. Saville,et al.  Electrophoretic assembly of colloidal crystals with optically tunable micropatterns , 2000, Nature.

[41]  Sergei G. Romanov,et al.  Micromoulding of three-dimensional photonic crystals on silicon substrates , 2003 .

[42]  G. J. Veldhuis,et al.  Nanosieves with microsystem technology for microfiltration applications , 1998 .

[43]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[44]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[45]  J. Sturm,et al.  On-chip natural assembly of silicon photonic bandgap crystals , 2001, Nature.

[46]  O. Park,et al.  Three‐Dimensional Self‐Assembly of Colloids at a Water–Air Interface: A Novel Technique for the Fabrication of Photonic Bandgap Crystals , 2002 .

[47]  E. Kumacheva,et al.  Colloid Crystal Growth under Oscillatory Shear , 2000 .

[48]  M. Dijkstra Computer simulations of charge and steric stabilised colloidal suspensions , 2001 .

[49]  Miguel Holgado,et al.  Electrophoretic Deposition To Control Artificial Opal Growth , 1999 .

[50]  A. Stein Sphere templating methods for periodic porous solids , 2001 .

[51]  E. Kumacheva,et al.  Colloid Crystal Growth on Mesoscopically Patterned Surfaces: Effect of Confinement , 2002 .

[52]  Michael Golosovsky,et al.  Self-assembly of floating magnetic particles into ordered structures: A promising route for the fabrication of tunable photonic band gap materials , 1999 .

[53]  Ke-Qin Zhang,et al.  In situ observation of colloidal monolayer nucleation driven by an alternating electric field , 2004, Nature.

[54]  A. Gast,et al.  Simple Ordering in Complex Fluids , 1998 .

[55]  J. Hoogenboom,et al.  Template-induced growth of close-packed and non-close-packed colloidal crystals during solvent evaporation , 2004 .

[56]  P. J. Ollivier,et al.  Ordered mesoporous polymers of tunable pore size from colloidal silica templates. , 1999, Science.

[57]  L. V. Woodcock Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures , 1997, Nature.

[58]  Kurt Busch,et al.  PHOTONIC BAND GAP FORMATION IN CERTAIN SELF-ORGANIZING SYSTEMS , 1998 .

[59]  H. Kawaguchi,et al.  Functional polymer microspheres , 2000 .

[60]  George M. Whitesides,et al.  Two‐ and three‐dimensional crystallization of polymeric microspheres by micromolding in capillaries , 1996 .

[61]  Younan Xia,et al.  Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. , 2001, Journal of the American Chemical Society.

[62]  Yadong Yin,et al.  Template‐Assisted Self‐Assembly of Spherical Colloids into Complex and Controllable Structures , 2003 .

[63]  R. F. W. Pease,et al.  Structure in Thin and Ultrathin Spin-Cast Polymer Films , 1996, Science.

[64]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[65]  Nicolas Tétreault,et al.  Oriented Free‐Standing Three‐Dimensional Silicon Inverted Colloidal Photonic Crystal Microfibers , 2002 .

[66]  Gunnar Glasser,et al.  Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[67]  G. Ozin,et al.  Colloidal Crystal Capillary Columns—Towards Optical Chromatography , 2005 .

[68]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[69]  Henry I. Smith,et al.  Fabrication of nanostructures with long-range order using block copolymer lithography , 2002 .

[70]  Jane F. Bertone,et al.  Single-Crystal Colloidal Multilayers of Controlled Thickness , 1999 .

[71]  Yoshitake Masuda,et al.  Self-assembly patterning of colloidal crystals constructed from opal structure or NaCl structure. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[72]  G. Grest,et al.  Phase diagram and dynamics of Yukawa systems , 1988 .

[73]  M. C. Wilkinson,et al.  Polymer latices as model colloids , 1981 .

[74]  James W. Goodwin,et al.  The preparation of poly(methyl methacrylate) latices in non-aqueous media , 1986 .

[75]  Younan Xia,et al.  Crystallization of Mesoscale Particles over Large Areas , 1998 .

[76]  J. Vanderhoff,et al.  Preparation of highly sulfonated polystyrene model colloids , 1989 .

[77]  J. Aizenberg,et al.  Patterned colloidal deposition controlled by electrostatic and capillary forces. , 2000, Physical review letters.

[78]  Sirota,et al.  Complete phase diagram of a charged colloidal system: A synchro- tron x-ray scattering study. , 1989, Physical review letters.

[79]  S. Underwood,et al.  Sterically Stabilized Colloidal Particles as Model Hard Spheres , 1994 .

[80]  Thomas C. Hales Sphere Packings, II , 1997, Discret. Comput. Geom..

[81]  Kuniaki Nagayama,et al.  Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces , 1996 .

[82]  Paul Mulvaney,et al.  Synthesis of Nanosized Gold−Silica Core−Shell Particles , 1996 .

[83]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[84]  E. Costard,et al.  Fabrication of a 2D photonic bandgap by a holographic method , 1997 .

[85]  Jane F. Bertone,et al.  Thickness Dependence of the Optical Properties of Ordered Silica-Air and Air-Polymer Photonic Crystals , 1999 .

[86]  Yurii A. Vlasov,et al.  Chemical Approaches to Three‐Dimensional Semiconductor Photonic Crystals , 2001 .

[87]  Christopher A. White,et al.  Epitaxial Growth of High Dielectric Contrast Three‐Dimensional Photonic Crystals , 2001 .

[88]  Younan Xia,et al.  A THREE-DIMENSIONAL PHOTONIC CRYSTAL OPERATING IN THE VISIBLE REGION , 1999 .

[89]  Younan Xia,et al.  Growth of Large Colloidal Crystals with Their (100) Planes Orientated Parallel to the Surfaces of Supporting Substrates , 2002 .

[90]  Ilhan A. Aksay,et al.  Assembly of Colloidal Crystals at Electrode Interfaces , 1997 .

[91]  Rudolf Zentel,et al.  Self-assembly of three-dimensional photonic crystals on structured silicon wafers , 2002 .

[92]  Robin H. A. Ras,et al.  Langmuir-Blodgett deposition and optical diffraction of two-dimensional opal , 2001 .

[93]  Miguel Holgado,et al.  3D Long‐range ordering in ein SiO2 submicrometer‐sphere sintered superstructure , 1997 .

[94]  J. W. Goodwin,et al.  Studies on the preparation and characterisation of monodisperse polystyrene laticee , 1974 .

[95]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[96]  Hideyuki Yoshimura,et al.  Mechanism of formation of two-dimensional crystals from latex particles on substrates , 1992 .

[97]  Kevin M. Chen,et al.  Selective Self-Organization of Colloids on Patterned Polyelectrolyte Templates , 2000 .

[98]  Preparation and properties of uniform size colloids , 1993 .

[99]  P. Hammond,et al.  Controlled cluster size in patterned particle arrays via directed adsorption on confined surfaces , 2002 .

[100]  Vicki L. Colvin,et al.  From Opals to Optics: Colloidal Photonic Crystals , 2001 .

[101]  Younan Xia,et al.  Self‐Assembly of Monodispersed Spherical Colloids into Complex Aggregates with Well‐Defined Sizes, Shapes, and Structures , 2001 .

[102]  David W. McComb,et al.  Thin film photonic crystals: synthesis and characterisation , 2004 .

[103]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[104]  Francisco Meseguer,et al.  Evidence of FCC crystallization of SiO2 nanospheres , 1997 .

[105]  Kazuhiro Hane,et al.  Ultrasonically facilitated two‐dimensional crystallization of colloid particles , 1996 .

[106]  Andrew Schofield,et al.  Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization , 2001, Science.

[107]  Heinz Schmid,et al.  Transport Mechanisms of Alkanethiols during Microcontact Printing on Gold , 1998 .

[108]  P. Leiderer,et al.  GRAIN SIZE CONTROL IN POLYCRYSTALLINE COLLOIDAL SOLIDS , 1995 .

[109]  L E Helseth,et al.  Assembling and manipulating two-dimensional colloidal crystals with movable nanomagnets. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[110]  Younan Xia,et al.  Template-Directed Growth of (100)-Oriented Colloidal Crystals , 2003 .

[111]  Chan,et al.  Existence of a photonic gap in periodic dielectric structures. , 1990, Physical review letters.

[112]  W. Ford,et al.  Synthesis of monodisperse crosslinked polystyrene latexes containing (vinylbenzyl)trimethylammonium chloride units , 1993 .

[113]  Orlin D. Velev,et al.  Structured porous materials via colloidal crystal templating: from inorganic oxides to metals , 2000 .

[114]  Vinothan N Manoharan,et al.  Dense Packing and Symmetry in Small Clusters of Microspheres , 2003, Science.

[115]  R. Arshady,et al.  Suspension, emulsion, and dispersion polymerization: A methodological survey , 1992 .

[116]  Yoshio Kobayashi,et al.  Preparation of micrometer-sized poly(methyl methacrylate) particles with amphoteric initiator in aqueous media. , 2004, Langmuir.

[117]  Video microscopy of colloidal suspensions and colloidal crystals , 2002, cond-mat/0204507.

[118]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.

[119]  P. Pusey,et al.  Phase behaviour of concentrated suspensions of nearly hard colloidal spheres , 1986, Nature.

[120]  Brian M. Leonard,et al.  Colloidal crystal microarrays and two-dimensional superstructures: a versatile approach for patterned surface assembly. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[121]  Daan Frenkel,et al.  New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres , 1984 .

[122]  Helmuth Möhwald,et al.  Template-directed colloidal self-assembly – the route to ‘top-down’ nanochemical engineering , 2004 .

[123]  P. Kralchevsky,et al.  Capillary forces and structuring in layers of colloid particles , 2001 .

[124]  A. L. German,et al.  SYNTHESIS, PURIFICATION AND CHARACTERIZATION OF CATIONIC LATICES PRODUCED BY THE EMULSION COPOLYMERIZATION OF STYRENE WITH 3-(METHACRYLAMIDINOPROPYL)TRIMETHYLAMMONIUM CHLORIDE , 1991 .

[125]  A. Polman,et al.  Shaping colloidal assemblies , 2004 .

[126]  J. Lewis,et al.  Structural evolution of colloidal crystals with increasing ionic strength. , 2004, Langmuir.

[127]  Gijsbertus J.M. Krijnen,et al.  Fabrication of microsieves with sub-micron pore size by laser interference lithography , 2001 .

[128]  Serge Ravaine,et al.  Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique , 2003 .

[129]  Younan Xia,et al.  Preparation and Characterization of Micrometer-Sized “Egg Shells” , 2001 .

[130]  G. Reiter Model experiments for a molecular understanding of polymer crystallization , 2003 .

[131]  Egon Matijević,et al.  Uniform inorganic colloid dispersions. Achievements and challenges , 1994 .

[132]  Dong Kee Yi,et al.  Surface-modulation-controlled three-dimensional colloidal crystals , 2002 .

[133]  E. Sargent,et al.  Colloidal Crystals Grown on Patterned Surfaces , 2004 .

[134]  Michael Seul,et al.  Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow , 1997, Nature.

[135]  Reese,et al.  Synthesis of Highly Charged, Monodisperse Polystyrene Colloidal Particles for the Fabrication of Photonic Crystals. , 2000, Journal of colloid and interface science.

[136]  G. Reiter,et al.  Crystallization of Adsorbed Polymer Monolayers , 1998 .

[137]  Alain M. Jonas,et al.  Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties , 2000 .

[138]  Geoffrey A. Ozin,et al.  Opal chips: vectorial growth of colloidal crystal patterns inside silicon wafers , 2000 .

[139]  D. Marr,et al.  Photon-directed colloidal crystallization , 2004 .

[140]  Bartlett,et al.  Superlattice formation in binary mixtures of hard-sphere colloids. , 1992, Physical review letters.

[141]  Geoffrey A. Ozin,et al.  Self‐Assembled Surface Patterns of Binary Colloidal Crystals , 2003 .

[142]  Two-dimensional colloid crystals obtained by coupling of flow and confinement. , 2003, Physical review letters.

[143]  S. Matsuo,et al.  Formation of free-standing micropyramidal colloidal crystals grown on silicon substrate , 2003 .

[144]  P. R. Tapster,et al.  Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment , 2000 .

[145]  C. López,et al.  Opal-like photonic crystal with diamond lattice , 2001 .

[146]  P. Wiltzius,et al.  Growing large, well‐oriented colloidal crystals , 1997 .

[147]  G. Whitesides,et al.  Polymer microstructures formed by moulding in capillaries , 1995, Nature.