Investigating compressibility descriptors for binary mixtures of different deformation behavior

[1]  P. Kleinebudde,et al.  Compressibility analysis as robust in-die compression analysis for describing tableting behaviour , 2022, RPS Pharmacy and Pharmacology Reports.

[2]  A. Kwade,et al.  Influence of the drug deformation behaviour on the predictability of compressibility and compactibility of binary mixtures. , 2022, International journal of pharmaceutics.

[3]  K. Naelapää,et al.  Predictive modelling of powder compaction for binary mixtures using the finite element method , 2022, Powder Technology.

[4]  Changquan Calvin Sun,et al.  Mean yield pressure from the in-die Heckel analysis is a reliable plasticity parameter , 2021, International journal of pharmaceutics: X.

[5]  P. Tchoreloff,et al.  Characterization and modeling of the viscoelasticity of pharmaceutical tablets. , 2020, International journal of pharmaceutics.

[6]  Y. Onuki,et al.  A Precise Prediction Method for the Properties of API-Containing Tablets Based on Data from Placebo Tablets , 2020, Pharmaceutics.

[7]  A. Crean,et al.  The application of percolation threshold theory to predict compaction behaviour of pharmaceutical powder blends , 2019, Powder Technology.

[8]  Changquan Calvin Sun,et al.  Relationship between hydrate stability and accuracy of true density measured by helium pycnometry. , 2019, International journal of pharmaceutics.

[9]  Changquan Calvin Sun,et al.  Dependence of Friability on Tablet Mechanical Properties and a Predictive Approach for Binary Mixtures , 2017, Pharmaceutical Research.

[10]  G. Reynolds,et al.  A compressibility based model for predicting the tensile strength of directly compressed pharmaceutical powder mixtures. , 2017, International journal of pharmaceutics.

[11]  K. Wagner,et al.  Prediction of solid fraction from powder mixtures based on single component compression analysis. , 2017, International journal of pharmaceutics.

[12]  Changquan Calvin Sun A classification system for tableting behaviors of binary powder mixtures , 2016 .

[13]  F. Etzler,et al.  Tablet Tensile Strength: Role of Surface Free Energy , 2015 .

[14]  F. Alvarez-Núñez,et al.  Evaluating and modifying Johanson's rolling model to improve its predictability. , 2014, Journal of pharmaceutical sciences.

[15]  Kailas S. Khomane,et al.  Effect of Particle Size on In-die and Out-of-die Compaction Behavior of Ranitidine Hydrochloride Polymorphs , 2013, AAPS PharmSciTech.

[16]  Tony Howes,et al.  Influence of particle size on the direct compression of ibuprofen and its binary mixtures , 2013 .

[17]  M. S. Anuar,et al.  Deformation and Mechanical Characteristics of Compacted Binary Mixtures of Plastic (Microcrystalline Cellulose), Elastic (Sodium Starch Glycolate), and Brittle (Lactose Monohydrate) Pharmaceutical Excipients , 2013 .

[18]  Francis S. Romanski,et al.  Effects of particle size disparity on the compaction behavior of binary mixtures of pharmaceutical powders , 2013 .

[19]  H. Diarra,et al.  Prediction of the compressibility of complex mixtures of pharmaceutical powders. , 2012, International journal of pharmaceutics.

[20]  M. Adams,et al.  A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders. , 2012, International journal of pharmaceutics.

[21]  Gabriele Betz,et al.  Compressibility of binary powder formulations: investigation and evaluation with compaction equations. , 2012, Journal of pharmaceutical sciences.

[22]  Vincent Mazel,et al.  Original predictive approach to the compressibility of pharmaceutical powder mixtures based on the Kawakita equation. , 2011, International journal of pharmaceutics.

[23]  Sarsvatkumar Patel,et al.  Prediction of mechanical properties of compacted binary mixtures containing high-dose poorly compressible drug. , 2011, International journal of pharmaceutics.

[24]  J. Nordström,et al.  A statistical approach to evaluate the potential use of compression parameters for classification of pharmaceutical powder materials. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[25]  Ingunn Tho,et al.  Comparative evaluation of the powder and compression properties of various grades and brands of microcrystalline cellulose by multivariate methods , 2009, Pharmaceutical development and technology.

[26]  Z. Zsigmond,et al.  Study of the compaction behaviour and compressibility of binary mixtures of some pharmaceutical excipients during direct compression , 2009 .

[27]  Göran Frenning,et al.  Effective Kawakita parameters for binary mixtures , 2009 .

[28]  Ken Welch,et al.  On the physical interpretation of the Kawakita and Adams parameters derived from confined compression of granular solids , 2008 .

[29]  J. Dodds,et al.  Predictions of tensile strength of binary tablets using linear and power law mixing rules. , 2007, International journal of pharmaceutics.

[30]  B. Leclerc,et al.  Compaction behaviour and new predictive approach to the compressibility of binary mixtures of pharmaceutical excipients. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[31]  Bruno C. Hancock,et al.  Predicting the Tensile Strength of Compacted Multi-Component Mixtures of Pharmaceutical Powders , 2006, Pharmaceutical Research.

[32]  B. Briscoe,et al.  A study on the coherence of compacted binary composites of microcrystalline cellulose and paracetamol. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[33]  J. B. Mielck,et al.  The difficulty in the assessment of the compression behaviour of powder mixtures: Double layer tablets versus arithmetic additivity rule. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[34]  Changquan Calvin Sun,et al.  Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. , 2005, Journal of pharmaceutical sciences.

[35]  M. Kuentz,et al.  Comparison of different mathematical models for the tensile strength-relative density profiles of binary tablets. , 2004, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[36]  Changquan Calvin Sun A novel method for deriving true density of pharmaceutical solids including hydrates and water-containing powders. , 2004, Journal of pharmaceutical sciences.

[37]  H. Frijlink,et al.  Predicting mechanical properties of compacts containing two components , 2004 .

[38]  M. Amin,et al.  Comparison Studies on the Percolation Thresholds of Binary Mixture Tablets Containing Excipients of Plastic/Brittle and Plastic/Plastic Deformation Properties , 2004, Drug development and industrial pharmacy.

[39]  J. Dodds,et al.  Formulation of solid products: two‐component tablets with a disintegrating agent , 2003 .

[40]  Changquan Calvin Sun,et al.  Influence of Elastic Deformation of Particles on Heckel Analysis , 2001, Pharmaceutical development and technology.

[41]  C. Nyström,et al.  Evaluation of Critical Binder Properties Affecting the Compactibility of Binary Mixtures , 2001, Drug Development and Industrial Pharmacy.

[42]  M. H. Rubinstein,et al.  Effect of Compression Force, Compression Speed, and Particle Size on the Compression Properties of Paracetamol , 2001, Drug development and industrial pharmacy.

[43]  J. Sonnergaard Impact of particle density and initial volume on mathematical compression models. , 2000, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[44]  D. Bouvard Densification behaviour of mixtures of hard and soft powders under pressure , 2000 .

[45]  G. Alderborn,et al.  Analysis of the Compression Mechanics of Pharmaceutical Agglomerates of Different Porosity and Composition Using the Adams and Kawakita Equations , 2000, Pharmaceutical Research.

[46]  M. Kuentz,et al.  A new theoretical approach to tablet strength of a binary mixture consisting of a well and a poorly compactable substance. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[47]  M. Siaan,et al.  Influence of Avicel PH-301 on the Compressibility of α-Methyldopa and Phenobarbitone in Direct Compression , 2000, Drug development and industrial pharmacy.

[48]  H Leuenberger,et al.  Pressure susceptibility of polymer tablets as a critical property: a modified Heckel equation. , 1999, Journal of pharmaceutical sciences.

[49]  H. Larhrib,et al.  Polyethylene glycol and dicalcium phosphate mixtures: effect of tableting pressure , 1997 .

[50]  Jukka Ilkka,et al.  Prediction of the compression behaviour of powder mixtures by the Heckel equation , 1993 .

[51]  K. Zuurman,et al.  Consolidation and compaction of powder mixtures: II. Binary mixtures of different particle size fractions of α-lactose monohydrate , 1991 .

[52]  M. H. Rubinstein,et al.  The effect of rate of force application on the properties of microcrystalline cellulose and dibasic calcium phosphate mixtures , 1991 .

[53]  L. E. Holman The compaction behaviour of particulate materials. An elucidation based on percolation theory , 1991 .

[54]  K. Zuurman,et al.  Consolidation and compaction of powder mixtures. I. Binary mixtures of same particle size fractions of different types of crystalline lactose , 1990 .

[55]  G. Bolhuis,et al.  Research paperConsolidation and compaction of powder mixtures. I. Binary mixtures of same particle size fractions of different types of crystalline lactose , 1990 .

[56]  H. Leuenberger,et al.  The effect of varying the composition of binary powder mixtures and compacts on their properties: A percolation phenomenon , 1990 .

[57]  H. Leuenberger,et al.  Percolation Theory and Compactibility of Binary Powder Systems , 1990, Pharmaceutical Research.

[58]  H. Vromans,et al.  Densification properties and compactibility of mixtures of pharmaceutical excipients with and without magnesium stearate , 1988 .

[59]  W. Jetzer Compaction characteristics of binary mixtures , 1986 .

[60]  H. Leuenberger Compression of binary powder mixtures and solubility parameters of solids , 1985 .

[61]  Hans Leuenberger,et al.  The compressibility and compactibility of powder systems , 1982 .

[62]  J. M. Newton,et al.  The strength of tablets of mixed components , 1977, The Journal of pharmacy and pharmacology.

[63]  J. Newton,et al.  Determination of tablet strength by the diametral-compression test. , 1970, Journal of pharmaceutical sciences.

[64]  J. Johanson A Rolling Theory for Granular Solids , 1965 .

[65]  Hikaru G. Jolliffe,et al.  Improving the prediction of multi-component tablet properties from pure component parameters , 2019, Computer Aided Chemical Engineering.

[66]  R.,et al.  Density-Pressure Relationships in Powder Compaction , 2010 .

[67]  Seong Hoon Jeong,et al.  Material Properties and Compressibility Using Heckel and Kawakita Equation with Commonly Used Pharmaceutical Excipients , 2010 .

[68]  B. V. Veen Compaction of powder blends: effect of pores, particles and percolation on tablet strength , 2003 .

[69]  J. S. Reed,et al.  The packing density of binary powder mixtures , 1995 .

[70]  G. Alderborn,et al.  Bonding Surface area and Bonding Mechanism-Two Important Factors fir the Understanding of Powder Comparability , 1993 .

[71]  H. Leuenberger,et al.  The compactibility of powder systems - a novel approach , 1984 .

[72]  Kimio Kawakita,et al.  An Empirical Equation of State for Powder Compression , 1965 .

[73]  E. E. Walker The properties of powders. Part VI. The compressibility of powders , 1923 .